IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44672-3.html
   My bibliography  Save this article

Scalable nano-architecture for stable near-blackbody solar absorption at high temperatures

Author

Listed:
  • Yifan Guo

    (Australian National University
    Australian National University)

  • Kaoru Tsuda

    (Nano Frontier Technology)

  • Sahar Hosseini

    (Australian National University
    Australian National University)

  • Yasushi Murakami

    (Shinshu University)

  • Antonio Tricoli

    (University of Sydney
    Australian National University)

  • Joe Coventry

    (Australian National University)

  • Wojciech Lipiński

    (The Cyprus Institute)

  • Juan F. Torres

    (Australian National University)

Abstract

Light trapping enhancement by nanostructures is ubiquitous in engineering applications, for example, in improving highly-efficient concentrating solar thermal (CST) technologies. However, most nano-engineered coatings and metasurfaces are not scalable to large surfaces ( > 100 m2) and are unstable at elevated temperatures ( > 850 °C), hindering their wide-spread adoption in CST. Here, we propose a scalable layer nano-architecture that can significantly enhance the solar absorption of an arbitrary material. Our electromagnetics modelling predicts that the absorptance of cutting-edge light-absorbers can be further enhanced by more than 70%, i.e. relative improvement towards blackbody absorption from a baseline value without the nano-architecture. Experimentally, the nano-architecture yields a solar absorber that is 35% optically closer to a blackbody, even after long-term (1000 h) high-temperature (900 °C) ageing in air. A stable solar absorptance of more than 97.88 ± 0.14% is achieved, to the best of our knowledge, the highest so far reported for these extreme ageing conditions. The scalability of the layer nano-architecture is further demonstrated with a drone-assisted deposition, paving the way towards a simple yet significant solar absorptance boosting and maintenance method for existing and newly developed CST absorbing materials.

Suggested Citation

  • Yifan Guo & Kaoru Tsuda & Sahar Hosseini & Yasushi Murakami & Antonio Tricoli & Joe Coventry & Wojciech Lipiński & Juan F. Torres, 2024. "Scalable nano-architecture for stable near-blackbody solar absorption at high temperatures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44672-3
    DOI: 10.1038/s41467-023-44672-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44672-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44672-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    2. Zhang, Ke & Hao, Lei & Du, Miao & Mi, Jing & Wang, Ji-Ning & Meng, Jian-ping, 2017. "A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1282-1299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wen-Qi & He, Ya-Ling & Jiang, Rui, 2022. "A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 714-723.
    2. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    3. Lei, Dongqiang & Fu, Xuqiang & Ren, Yucong & Yao, Fangyuan & Wang, Zhifeng, 2019. "Temperature and thermal stress analysis of parabolic trough receivers," Renewable Energy, Elsevier, vol. 136(C), pages 403-413.
    4. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    5. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    6. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    7. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    8. Song, Jifeng & Tong, Kai & Luo, Geng & Li, Lei, 2017. "Influence of non-ideal optical factors in actual engineering on the safety and stability of a parabolic trough collector," Renewable Energy, Elsevier, vol. 113(C), pages 1293-1301.
    9. Caron, Simon & Garrido, Jorge & Ballestrín, Jesus & Sutter, Florian & Röger, Marc & Manzano-Agugliaro, Francisco, 2022. "A comparative analysis of opto-thermal figures of merit for high temperature solar thermal absorber coatings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Balaji, K. & Ganesh Kumar, P. & Sakthivadivel, D. & Vigneswaran, V.S. & Iniyan, S., 2019. "Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube," Renewable Energy, Elsevier, vol. 142(C), pages 62-72.
    11. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    12. Wang, Chengbing & Li, Wei & Li, Zhengtong & Fang, Baizeng, 2020. "Solar thermal harvesting based on self-doped nanocermet: Structural merits, design strategies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Henok G. Gebretinsae & Meresa G. Tsegay & Giday G. Welegergs & Malik Maaza & Zebib Y. Nuru, 2022. "Effect of Rotational Speed on the Structural, Morphological, and Optical Properties of Biosynthesized Nickel Oxide Thin Films for Selective Solar Absorber Nanocoatings," Energies, MDPI, vol. 15(23), pages 1-18, November.
    14. Ye, Kai & Li, Qing & Zhang, Yuanting & Qiu, Yu & Liu, Bin, 2022. "An efficient receiver tube enhanced by a solar transparent aerogel for solar power tower," Energy, Elsevier, vol. 261(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44672-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.