IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44518-y.html
   My bibliography  Save this article

Scalable integrated two-dimensional Fourier-transform spectrometry

Author

Listed:
  • Hongnan Xu

    (The Chinese University of Hong Kong)

  • Yue Qin

    (The Chinese University of Hong Kong)

  • Gaolei Hu

    (The Chinese University of Hong Kong)

  • Hon Ki Tsang

    (The Chinese University of Hong Kong)

Abstract

Integrated spectrometers offer the advantages of small sizes and high portability, enabling new applications in industrial development and scientific research. Integrated Fourier-transform spectrometers (FTS) have the potential to realize a high signal-to-noise ratio but typically have a trade-off between the resolution and bandwidth. Here, we propose and demonstrate the concept of the two-dimensional FTS (2D-FTS) to circumvent the trade-off and improve scalability. The core idea is to utilize 2D Fourier transform instead of 1D Fourier transform to rebuild spectra. By combining a tunable FTS and a spatial heterodyne spectrometer, the interferogram becomes a 2D pattern with variations of heating power and arm lengths. All wavelengths are mapped to a cluster of spots in the 2D Fourier map beyond the free-spectral-range limit. At the Rayleigh criterion, the demonstrated resolution is 250 pm over a 200-nm bandwidth. The resolution can be enhanced to 125 pm using the computational method.

Suggested Citation

  • Hongnan Xu & Yue Qin & Gaolei Hu & Hon Ki Tsang, 2024. "Scalable integrated two-dimensional Fourier-transform spectrometry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44518-y
    DOI: 10.1038/s41467-023-44518-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44518-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44518-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mario C. M. M. Souza & Andrew Grieco & Newton C. Frateschi & Yeshaiahu Fainman, 2018. "Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Derek M. Kita & Brando Miranda & David Favela & David Bono & Jérôme Michon & Hongtao Lin & Tian Gu & Juejun Hu, 2018. "High-performance and scalable on-chip digital Fourier transform spectroscopy," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. S. N. Zheng & J. Zou & H. Cai & J. F. Song & L. K. Chin & P. Y. Liu & Z. P. Lin & D. L. Kwong & A. Q. Liu, 2019. "Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel W. Pruessner & Nathan F. Tyndall & Jacob B. Khurgin & William S. Rabinovich & Peter G. Goetz & Todd H. Stievater, 2024. "Broadband near-infrared emission in silicon waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Wenjie Deng & Zilong Zheng & Jingzhen Li & Rongkun Zhou & Xiaoqing Chen & Dehui Zhang & Yue Lu & Chongwu Wang & Congya You & Songyu Li & Ling Sun & Yi Wu & Xuhong Li & Boxing An & Zheng Liu & Qi jie W, 2022. "Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Giovanni Finco & Gaoyuan Li & David Pohl & Marc Reig Escalé & Andreas Maeder & Fabian Kaufmann & Rachel Grange, 2024. "Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Jingyi Wang & Beibei Pan & Zi Wang & Jiakai Zhang & Zhiqi Zhou & Lu Yao & Yanan Wu & Wuwei Ren & Jianyu Wang & Haiming Ji & Jingyi Yu & Baile Chen, 2024. "Single-pixel p-graded-n junction spectrometers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Chunhui Yao & Wanlu Zhang & Peng Bao & Jie Ma & Wei Zhuo & Minjia Chen & Zhitian Shi & Jingwen Zhou & Yuxiao Ye & Liang Ming & Ting Yan & Richard Penty & Qixiang Cheng, 2024. "Chip-scale sensor for spectroscopic metrology," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Luigi Ranno & Yong Zen Tan & Chi Siang Ong & Xin Guo & Khong Nee Koo & Xiang Li & Wanjun Wang & Samuel Serna & Chongyang Liu & Rusli & Callum G. Littlejohns & Graham T. Reed & Juejun Hu & Hong Wang & , 2024. "Crown ether decorated silicon photonics for safeguarding against lead poisoning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Dylan Tua & Ruiying Liu & Wenhong Yang & Lyu Zhou & Haomin Song & Leslie Ying & Qiaoqiang Gan, 2023. "Imaging-based intelligent spectrometer on a plasmonic rainbow chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Gang Wu & Mohamed Abid & Mohamed Zerara & Jiung Cho & Miri Choi & Cormac Ó Coileáin & Kuan-Ming Hung & Ching-Ray Chang & Igor V. Shvets & Han-Chun Wu, 2024. "Miniaturized spectrometer with intrinsic long-term image memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Oleksii Ilchenko & Yurii Pilhun & Andrii Kutsyk & Denys Slobodianiuk & Yaman Goksel & Elodie Dumont & Lukas Vaut & Chiara Mazzoni & Lidia Morelli & Sofus Boisen & Konstantinos Stergiou & Yaroslav Auli, 2024. "Optics miniaturization strategy for demanding Raman spectroscopy applications," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44518-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.