Upregulated pexophagy limits the capacity of selective autophagy
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-44005-4
Download full text from publisher
References listed on IDEAS
- Michael Lazarou & Danielle A. Sliter & Lesley A. Kane & Shireen A. Sarraf & Chunxin Wang & Jonathon L. Burman & Dionisia P. Sideris & Adam I. Fogel & Richard J. Youle, 2015. "The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy," Nature, Nature, vol. 524(7565), pages 309-314, August.
- Bo-Hua Chen & Yao-Jen Chang & Steven Lin & Wei Yuan Yang, 2020. "Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taeko Sasaki & Yasuharu Kushida & Takuya Norizuki & Hidetaka Kosako & Ken Sato & Miyuki Sato, 2024. "ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Qiang Zhu & Matthew E. Combs & Juan Liu & Xue Bai & Wenbo B. Wang & Laura E. Herring & Jiandong Liu & Jason W. Locasale & Dawn E. Bowles & Ryan T. Gross & Michelle Mendiola Pla & Christopher P. Mack &, 2023. "GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
- Remzi Onur Eren & Göksu Gökberk Kaya & Robin Schwarzer & Manolis Pasparakis, 2024. "IKKε and TBK1 prevent RIPK1 dependent and independent inflammation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Huan Yang & Caroline Sibilla & Raymond Liu & Jina Yun & Bruce A. Hay & Craig Blackstone & David C. Chan & Robert J. Harvey & Ming Guo, 2022. "Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Zhen Yuan & Kun Cai & Jiajia Li & Ruifeng Chen & Fuhai Zhang & Xuan Tan & Yaming Jiu & Haishuang Chang & Bing Hu & Weiyi Zhang & Binbin Ding, 2024. "ATG14 targets lipid droplets and acts as an autophagic receptor for syntaxin18-regulated lipid droplet turnover," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Michael J. Munson & Benan J. Mathai & Matthew Yoke Wui Ng & Laura Trachsel-Moncho & Laura R. Ballina & Sebastian W. Schultz & Yahyah Aman & Alf H. Lystad & Sakshi Singh & Sachin Singh & Jørgen Wesche , 2021. "GAK and PRKCD are positive regulators of PRKN-independent mitophagy," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
- Shuang-zhou Peng & Xiao-hui Chen & Si-jie Chen & Jie Zhang & Chuan-ying Wang & Wei-rong Liu & Duo Zhang & Ying Su & Xiao-kun Zhang, 2021. "Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Shuai Gao & Lingyu Gao & Dailin Yuan & Xu’ai Lin & Stijn Veen, 2024. "Gonococcal OMV-delivered PorB induces epithelial cell mitophagy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Kihyoun Park & Hyejin Lim & Jinyoung Kim & Yeseong Hwang & Yu Seol Lee & Soo Han Bae & Hyeongseok Kim & Hail Kim & Shin-Wook Kang & Joo Young Kim & Myung-Shik Lee, 2022. "Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Hayden Weng Siong Tan & Guang Lu & Han Dong & Yik-Lam Cho & Auginia Natalia & Liming Wang & Charlene Chan & Dennis Kappei & Reshma Taneja & Shuo-Chien Ling & Huilin Shao & Shih-Yin Tsai & Wen-Xing Din, 2022. "A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Simon Maria Kienle & Tobias Schneider & Katrin Stuber & Christoph Globisch & Jasmin Jansen & Florian Stengel & Christine Peter & Andreas Marx & Michael Kovermann & Martin Scheffner, 2022. "Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44005-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.