IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44192-0.html
   My bibliography  Save this article

Mitochondrial malfunction and atrophy of astrocytes in the aged human cerebral cortex

Author

Listed:
  • Alexander Popov

    (Jiaxing University
    Russian Academy of Sciences)

  • Nadezda Brazhe

    (Russian Academy of Sciences
    Moscow State University)

  • Kseniia Morozova

    (Moscow State University)

  • Konstantin Yashin

    (Privolzhskiy Research Medical University)

  • Maxim Bychkov

    (Russian Academy of Sciences)

  • Olga Nosova

    (Institute of Experimental Medicine)

  • Oksana Sutyagina

    (Russian Academy of Sciences)

  • Alexey Brazhe

    (Russian Academy of Sciences
    Moscow State University)

  • Evgenia Parshina

    (Moscow State University)

  • Li Li

    (Jiaxing University)

  • Igor Medyanik

    (Privolzhskiy Research Medical University)

  • Dmitry E. Korzhevskii

    (Institute of Experimental Medicine)

  • Zakhar Shenkarev

    (Russian Academy of Sciences)

  • Ekaterina Lyukmanova

    (Russian Academy of Sciences
    Moscow State University
    Shenzhen MSU-BIT University)

  • Alexei Verkhratsky

    (The University of Manchester
    IKERBASQUE, Basque Foundation for Science
    University of the Basque Country UPV/EHU and CIBERNED)

  • Alexey Semyanov

    (Jiaxing University
    Russian Academy of Sciences
    Moscow State University
    Sechenov First Moscow State Medical University)

Abstract

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22–50 years) and older (51–72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.

Suggested Citation

  • Alexander Popov & Nadezda Brazhe & Kseniia Morozova & Konstantin Yashin & Maxim Bychkov & Olga Nosova & Oksana Sutyagina & Alexey Brazhe & Evgenia Parshina & Li Li & Igor Medyanik & Dmitry E. Korzhevs, 2023. "Mitochondrial malfunction and atrophy of astrocytes in the aged human cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44192-0
    DOI: 10.1038/s41467-023-44192-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44192-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44192-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Vilchez & Isabel Saez & Andrew Dillin, 2014. "The role of protein clearance mechanisms in organismal ageing and age-related diseases," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    2. Humsa S. Venkatesh & Wade Morishita & Anna C. Geraghty & Dana Silverbush & Shawn M. Gillespie & Marlene Arzt & Lydia T. Tam & Cedric Espenel & Anitha Ponnuswami & Lijun Ni & Pamelyn J. Woo & Kathryn R, 2019. "Electrical and synaptic integration of glioma into neural circuits," Nature, Nature, vol. 573(7775), pages 539-545, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Dylan Scott Lykke Harwood & Vilde Pedersen & Nicolai Schou Bager & Ane Yde Schmidt & Tobias Overlund Stannius & Aušrinė Areškevičiūtė & Knud Josefsen & Dorte Schou Nørøxe & David Scheie & Hannah Rosta, 2024. "Glioblastoma cells increase expression of notch signaling and synaptic genes within infiltrated brain tissue," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yanming Ren & Zongyao Huang & Lingling Zhou & Peng Xiao & Junwei Song & Ping He & Chuanxing Xie & Ran Zhou & Menghan Li & Xiangqun Dong & Qing Mao & Chao You & Jianguo Xu & Yanhui Liu & Zhigang Lan & , 2023. "Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. William H. Tomaszewski & Jessica Waibl-Polania & Molly Chakraborty & Jonathan Perera & Jeremy Ratiu & Alexandra Miggelbrink & Donald P. McDonnell & Mustafa Khasraw & David M. Ashley & Peter E. Fecci &, 2022. "Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Ling Hai & Dirk C. Hoffmann & Robin J. Wagener & Daniel D. Azorin & David Hausmann & Ruifan Xie & Magnus-Carsten Huppertz & Julien Hiblot & Philipp Sievers & Sophie Heuer & Jakob Ito & Gina Cebulla & , 2024. "A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    6. Jochen Meyer & Kwanha Yu & Estefania Luna-Figueroa & Benjamin Deneen & Jeffrey Noebels, 2024. "Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Corina Anastasaki & Juan Mo & Ji-Kang Chen & Jit Chatterjee & Yuan Pan & Suzanne M. Scheaffer & Olivia Cobb & Michelle Monje & Lu Q. Le & David H. Gutmann, 2022. "Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Yuanning Zheng & Francisco Carrillo-Perez & Marija Pizurica & Dieter Henrik Heiland & Olivier Gevaert, 2023. "Spatial cellular architecture predicts prognosis in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Romain Sigaud & Thomas K. Albert & Caroline Hess & Thomas Hielscher & Nadine Winkler & Daniela Kocher & Carolin Walter & Daniel Münter & Florian Selt & Diren Usta & Jonas Ecker & Angela Brentrup & Mar, 2023. "MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Shweta Godbole & Hannah Voß & Antonia Gocke & Simon Schlumbohm & Yannis Schumann & Bojia Peng & Martin Mynarek & Stefan Rutkowski & Matthias Dottermusch & Mario M. Dorostkar & Andrey Korshunov & Thoma, 2024. "Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44192-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.