IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44151-9.html
   My bibliography  Save this article

Ubiquitination-mediated Golgi-to-endosome sorting determines the toxin-antidote duality of fission yeast wtf meiotic drivers

Author

Listed:
  • Jin-Xin Zheng

    (National Institute of Biological Sciences
    Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences)

  • Tong-Yang Du

    (National Institute of Biological Sciences
    Beijing Normal University)

  • Guang-Can Shao

    (National Institute of Biological Sciences)

  • Zhu-Hui Ma

    (National Institute of Biological Sciences)

  • Zhao-Di Jiang

    (National Institute of Biological Sciences)

  • Wen Hu

    (National Institute of Biological Sciences)

  • Fang Suo

    (National Institute of Biological Sciences)

  • Wanzhong He

    (National Institute of Biological Sciences)

  • Meng-Qiu Dong

    (National Institute of Biological Sciences
    Tsinghua University)

  • Li-Lin Du

    (National Institute of Biological Sciences
    Tsinghua University)

Abstract

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.

Suggested Citation

  • Jin-Xin Zheng & Tong-Yang Du & Guang-Can Shao & Zhu-Hui Ma & Zhao-Di Jiang & Wen Hu & Fang Suo & Wanzhong He & Meng-Qiu Dong & Li-Lin Du, 2023. "Ubiquitination-mediated Golgi-to-endosome sorting determines the toxin-antidote duality of fission yeast wtf meiotic drivers," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44151-9
    DOI: 10.1038/s41467-023-44151-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44151-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44151-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camilla Raiborg & Harald Stenmark, 2009. "The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins," Nature, Nature, vol. 458(7237), pages 445-452, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyan Song & Yuxin Cen & Zhe Qian & Xiaoli S. Wu & Keith Rivera & Tse-Luen Wee & Osama E. Demerdash & Kenneth Chang & Darryl Pappin & Christopher R. Vakoc & Nicholas K. Tonks, 2024. "PTPN23-dependent ESCRT machinery functions as a cell death checkpoint," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Sarah Renaud & Anthony Lefebvre & Olivier Moralès & Nadira Delhem, 2019. "Mini Review - Exosomes from Discovery to Isolation," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(2), pages 11286-11293, February.
    3. Meihua Jin & Hiroki Shiwaku & Hikari Tanaka & Takayuki Obita & Sakurako Ohuchi & Yuki Yoshioka & Xiaocen Jin & Kanoh Kondo & Kyota Fujita & Hidenori Homma & Kazuyuki Nakajima & Mineyuki Mizuguchi & Hi, 2021. "Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    4. Yonglun Zeng & Baiying Li & Shuxian Huang & Hongbo Li & Wenhan Cao & Yixuan Chen & Guoyong Liu & Zhenping Li & Chao Yang & Lei Feng & Jiayang Gao & Sze Wan Lo & Jierui Zhao & Jinbo Shen & Yan Guo & Ca, 2023. "The plant unique ESCRT component FREE1 regulates autophagosome closure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Torben Mentrup & Anna Yamina Stumpff-Niggemann & Nadja Leinung & Christine Schlosser & Katja Schubert & Rebekka Wehner & Antje Tunger & Valentin Schatz & Patrick Neubert & Ann-Christine Gradtke & Jani, 2022. "Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44151-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.