IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43994-6.html
   My bibliography  Save this article

Reconciling patterns of long-term topographic growth with coseismic uplift by synchronous duplex thrusting

Author

Listed:
  • Yuqing Zhang

    (Research Institute of Petroleum Exploration and Development, PetroChina
    Zhejiang University
    Ministry of Education)

  • Hanlin Chen

    (Zhejiang University
    Ministry of Education)

  • Xuhua Shi

    (Zhejiang University
    Ministry of Education
    Xinjiang Pamir Intracontinental Subduction National Observation and Research Station)

  • Rafael Almeida

    (San Diego State University)

  • Richard Walker

    (University of Oxford)

  • Xiubin Lin

    (Zhejiang University
    Ministry of Education)

  • Xiaogan Cheng

    (Zhejiang University
    Ministry of Education)

  • Hongdan Deng

    (Zhejiang University
    Ministry of Education)

  • Zhuxin Chen

    (Research Institute of Petroleum Exploration and Development, PetroChina)

  • Xiu Hu

    (Sun Yat-Sen University)

Abstract

How long-term changes in surface topography relate to coseismic uplift is key to understanding the creation of high elevations along active mountain fronts, and remains hotly debated. Here we investigate this link by modeling the development of growth strata and the folding of river terraces above the Pishan duplex system in the southern Tarim Basin. We show that synchronous duplex thrusting of two neighboring faults with varying slip rates, associated with in-sequence propagation of the Pishan thrust system, is required to explain the presence of opposite-dipping panels of growth strata on the duplex front, and basinward migration of terrace fold crests. Importantly, this process of synchronous thrusting within the duplex reconciles the discrepancy between the deformation of terrace folds at the 10−1–100 million-year timescale and the maximum coseismic uplift of the 2015 Mw 6.4 Pishan earthquake on the frontal thrust. These results suggest that topography mismatch at different time scales can reflect the long-term kinematic evolution of fault systems. Thus, our study highlights the importance of characterizing complex subsurface fault kinematics for studying topographic growth, and motivates rethinking of the mountain building process in worldwide active fold-and-thrust belts, from short-term to long-term timescales.

Suggested Citation

  • Yuqing Zhang & Hanlin Chen & Xuhua Shi & Rafael Almeida & Richard Walker & Xiubin Lin & Xiaogan Cheng & Hongdan Deng & Zhuxin Chen & Xiu Hu, 2023. "Reconciling patterns of long-term topographic growth with coseismic uplift by synchronous duplex thrusting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43994-6
    DOI: 10.1038/s41467-023-43994-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43994-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43994-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. An Zhisheng & John E. Kutzbach & Warren L. Prell & Stephen C. Porter, 2001. "Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times," Nature, Nature, vol. 411(6833), pages 62-66, May.
    2. Sean D. Willett & Scott W. McCoy & Helen W. Beeson, 2018. "Transience of the North American High Plains landscape and its impact on surface water," Nature, Nature, vol. 561(7724), pages 528-532, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Jingxiang Meng & Jian-Feng Mao & Wei Zhao & Fangqian Xing & Xinyu Chen & Hao Liu & Zhen Xing & Xiao-Ru Wang & Yue Li, 2015. "Adaptive Differentiation in Seedling Traits in a Hybrid Pine Species Complex, Pinus densata and Its Parental Species, on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    3. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    4. Zhengquan Yao & Xuefa Shi & Zhengtang Guo & Xinzhou Li & B. Nagender Nath & Christian Betzler & Hui Zhang & Sebastian Lindhorst & Pavan Miriyala, 2023. "Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Wan-Yi Zhao & Zhong-Cheng Liu & Shi Shi & Jie-Lan Li & Ke-Wang Xu & Kang-You Huang & Zhi-Hui Chen & Ya-Rong Wang & Cui-Ying Huang & Yan Wang & Jing-Rui Chen & Xian-Ling Sun & Wen-Xing Liang & Wei Guo , 2024. "Landform and lithospheric development contribute to the assembly of mountain floras in China," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Libin Yan & Zhengyu Liu & Guangshan Chen & J. E. Kutzbach & Xiaodong Liu, 2016. "Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments," Climatic Change, Springer, vol. 135(3), pages 509-519, April.
    7. Hong Ao & Diederik Liebrand & Mark J. Dekkers & Andrew P. Roberts & Tara N. Jonell & Zhangdong Jin & Yougui Song & Qingsong Liu & Qiang Sun & Xinxia Li & Chunju Huang & Xiaoke Qiang & Peng Zhang, 2024. "Orbital- and millennial-scale Asian winter monsoon variability across the Pliocene–Pleistocene glacial intensification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Liping Liu & Esther Galbrun & Hui Tang & Anu Kaakinen & Zhongshi Zhang & Zijian Zhang & Indrė Žliobaitė, 2023. "The emergence of modern zoogeographic regions in Asia examined through climate–dental trait association patterns," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Zhenyu Qin & Xuefeng Sun, 2023. "Glacial–Interglacial Cycles and Early Human Evolution in China," Land, MDPI, vol. 12(9), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43994-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.