IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7724d10.1038_s41586-018-0532-1.html
   My bibliography  Save this article

Transience of the North American High Plains landscape and its impact on surface water

Author

Listed:
  • Sean D. Willett

    (ETH)

  • Scott W. McCoy

    (Global Water Center, University Nevada)

  • Helen W. Beeson

    (Global Water Center, University Nevada)

Abstract

Ecosystem diversity and human activity in dry climates depend not just on the magnitude of rainfall, but also on the landscape’s ability to retain water. This is illustrated dramatically in the High Plains of North America, where despite the semi-arid modern and past climate, the hydrologic conditions are diverse. Large rivers sourced in the Rocky Mountains cut through elevated plains that exhibit limited river drainage but widespread surface water in the form of ephemeral (seasonal) playa lakes1, as well as extensive groundwater hosted in the High Plains aquifer of the Ogallala formations2. Here we present a model, with supporting evidence, which shows that the High Plains landscape is currently in a transient state, in which the landscape has bifurcated into an older region with an inefficient river network and a younger, more efficient, river channel network that is progressively cannibalizing the older region. The older landscape represents the remnants of the Ogallala sediments that once covered the entirety of the High Plains, forming depositional fans that buried the pre-existing river network and effectively ‘repaved’ the High Plains3–6. Today we are witnessing the establishment of a new river network that is dissecting the landscape, capturing channels and eroding these sediment fans. Through quantitative analysis of the geometry of the river network, we show how network reorganization has resulted in a distinctive pattern of erosion, whereby the largest rivers have incised the older surface, removed fan heads near the Rocky Mountains and eroded the fan toes, but left portions of the central fan surface and the Ogallala sediments largely intact. These preserved fan surfaces have poor surface water drainage, and thus retain ephemeral water for wetlands and groundwater recharge. Our findings suggest that the surface hydrology and associated ecosystems are transient features on million-year timescales, and reflect the mode of landscape evolution.

Suggested Citation

  • Sean D. Willett & Scott W. McCoy & Helen W. Beeson, 2018. "Transience of the North American High Plains landscape and its impact on surface water," Nature, Nature, vol. 561(7724), pages 528-532, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0532-1
    DOI: 10.1038/s41586-018-0532-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0532-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0532-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqing Zhang & Hanlin Chen & Xuhua Shi & Rafael Almeida & Richard Walker & Xiubin Lin & Xiaogan Cheng & Hongdan Deng & Zhuxin Chen & Xiu Hu, 2023. "Reconciling patterns of long-term topographic growth with coseismic uplift by synchronous duplex thrusting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7724:d:10.1038_s41586-018-0532-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.