Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-43716-y
Download full text from publisher
References listed on IDEAS
- Carla L. Alves & Sidse Ehmsen & Mikkel G. Terp & Neil Portman & Martina Tuttolomondo & Odd L. Gammelgaard & Monique F. Hundebøl & Kamila Kaminska & Lene E. Johansen & Martin Bak & Gabriella Honeth & A, 2021. "Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Chad Liu & Yumi Konagaya & Mingyu Chung & Leighton H. Daigh & Yilin Fan & Hee Won Yang & Kenta Terai & Michiyuki Matsuda & Tobias Meyer, 2020. "Altered G1 signaling order and commitment point in cells proliferating without CDK4/6 activity," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Hee Won Yang & Mingyu Chung & Takamasa Kudo & Tobias Meyer, 2017. "Competing memories of mitogen and p53 signalling control cell-cycle entry," Nature, Nature, vol. 549(7672), pages 404-408, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi Zhang & Shuyan Zhou & Yan Kai & Ya-qin Zhang & Changmin Peng & Zhuqing Li & Muhammad Jameel mughal & Belmar Julie & Xiaoyan Zheng & Junfeng Ma & Cynthia X. Ma & Min Shen & Matthew D. Hall & Shunqia, 2024. "O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Nishtha Pandey & P K Vinod, 2018. "Mathematical modelling of reversible transition between quiescence and proliferation," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-15, June.
- Zack W Jones & Rachel Leander & Vito Quaranta & Leonard A Harris & Darren R Tyson, 2018. "A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43716-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.