High speed underwater hydrogel robots with programmable motions powered by light
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-43576-6
Download full text from publisher
References listed on IDEAS
- Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Zi Liang Wu & Michael Moshe & Jesse Greener & Heloise Therien-Aubin & Zhihong Nie & Eran Sharon & Eugenia Kumacheva, 2013. "Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
- Guorui Li & Xiangping Chen & Fanghao Zhou & Yiming Liang & Youhua Xiao & Xunuo Cao & Zhen Zhang & Mingqi Zhang & Baosheng Wu & Shunyu Yin & Yi Xu & Hongbo Fan & Zheng Chen & Wei Song & Wenjing Yang & , 2021. "Self-powered soft robot in the Mariana Trench," Nature, Nature, vol. 591(7848), pages 66-71, March.
- Yoonho Kim & Hyunwoo Yuk & Ruike Zhao & Shawn A. Chester & Xuanhe Zhao, 2018. "Printing ferromagnetic domains for untethered fast-transforming soft materials," Nature, Nature, vol. 558(7709), pages 274-279, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).
- Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Jianjian Huang & Xiaodie Zhang & Ruixue Liu & Yonghui Ding & Dongjie Guo, 2023. "Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Guoyong Mao & David Schiller & Doris Danninger & Bekele Hailegnaw & Florian Hartmann & Thomas Stockinger & Michael Drack & Nikita Arnold & Martin Kaltenbrunner, 2022. "Ultrafast small-scale soft electromagnetic robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Yifeng Shen & Dongdong Jin & Mingming Fu & Sanhu Liu & Zhiwu Xu & Qinghua Cao & Bo Wang & Guoqiang Li & Wenjun Chen & Shaoqin Liu & Xing Ma, 2023. "Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Wenwen Feng & Lin Sun & Zhekai Jin & Lili Chen & Yuncong Liu & Hao Xu & Chao Wang, 2024. "A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43576-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.