IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2549.html
   My bibliography  Save this article

Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

Author

Listed:
  • Zi Liang Wu

    (University of Toronto)

  • Michael Moshe

    (The Racah Institute of Physics, The Hebrew University)

  • Jesse Greener

    (University of Toronto)

  • Heloise Therien-Aubin

    (University of Toronto)

  • Zhihong Nie

    (University of Maryland)

  • Eran Sharon

    (The Racah Institute of Physics, The Hebrew University)

  • Eugenia Kumacheva

    (University of Toronto
    University of Toronto
    Institute of Biomaterials & Biomedical Engineering, University of Toronto)

Abstract

Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

Suggested Citation

  • Zi Liang Wu & Michael Moshe & Jesse Greener & Heloise Therien-Aubin & Zhihong Nie & Eran Sharon & Eugenia Kumacheva, 2013. "Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2549
    DOI: 10.1038/ncomms2549
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2549
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoqing Yang & Tengxiao Liu & Lihua Jin & Yu Huang & Xiangfeng Duan & Hongtao Sun, 2024. "Tailoring smart hydrogels through manipulation of heterogeneous subdomains," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Feilong Zhang & Dong Li & Changxian Wang & Zhihua Liu & Man Yang & Zequn Cui & Junqi Yi & Ming Wang & Ying Jiang & Zhisheng Lv & Shutao Wang & Huajian Gao & Xiaodong Chen, 2022. "Shape morphing of plastic films," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Chujun Ni & Di Chen & Xin Wen & Binjie Jin & Yi He & Tao Xie & Qian Zhao, 2023. "High speed underwater hydrogel robots with programmable motions powered by light," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.