IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43378-w.html
   My bibliography  Save this article

SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer

Author

Listed:
  • Hanyu Rao

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Changwei Liu

    (Shanghai Jiao Tong University)

  • Aiting Wang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Chunxiao Ma

    (Shanghai Jiao Tong University)

  • Yue Xu

    (Shanghai Jiao Tong University)

  • Tianbao Ye

    (Shanghai Jiao Tong University
    Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine)

  • Wenqiong Su

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Peijun Zhou

    (Shanghai Jiao Tong University)

  • Wei-Qiang Gao

    (Shanghai Jiao Tong University)

  • Li Li

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Xianting Ding

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain–containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.

Suggested Citation

  • Hanyu Rao & Changwei Liu & Aiting Wang & Chunxiao Ma & Yue Xu & Tianbao Ye & Wenqiong Su & Peijun Zhou & Wei-Qiang Gao & Li Li & Xianting Ding, 2023. "SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43378-w
    DOI: 10.1038/s41467-023-43378-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43378-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43378-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thangaselvam Muthusamy & Thekla Cordes & Michal K. Handzlik & Le You & Esther W. Lim & Jivani Gengatharan & Antonio F. M. Pinto & Mehmet G. Badur & Matthew J. Kolar & Martina Wallace & Alan Saghatelia, 2020. "Serine restriction alters sphingolipid diversity to constrain tumour growth," Nature, Nature, vol. 586(7831), pages 790-795, October.
    2. Jody Vykoukal & Johannes F. Fahrmann & Justin R. Gregg & Zhe Tang & Spyridon Basourakos & Ehsan Irajizad & Sanghee Park & Guang Yang & Chad J. Creighton & Alia Fleury & Jeffrey Mayo & Adriana Paulucci, 2020. "Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    3. Xiaotao Shen & Ruohong Wang & Xin Xiong & Yandong Yin & Yuping Cai & Zaijun Ma & Nan Liu & Zheng-Jiang Zhu, 2019. "Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kui Wang & Li Luo & Shuyue Fu & Mao Wang & Zihao Wang & Lixia Dong & Xingyun Wu & Lunzhi Dai & Yong Peng & Guobo Shen & Hai-Ning Chen & Edouard Collins Nice & Xiawei Wei & Canhua Huang, 2023. "PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ziwei Dai & Weiyan Zheng & Jason W. Locasale, 2022. "Amino acid variability, tradeoffs and optimality in human diet," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Xiaotao Shen & Hong Yan & Chuchu Wang & Peng Gao & Caroline H. Johnson & Michael P. Snyder, 2022. "TidyMass an object-oriented reproducible analysis framework for LC–MS data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhiqiang Pang & Lei Xu & Charles Viau & Yao Lu & Reza Salavati & Niladri Basu & Jianguo Xia, 2024. "MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Ruohong Wang & Yandong Yin & Jingshu Li & Hongmiao Wang & Wanting Lv & Yang Gao & Tangci Wang & Yedan Zhong & Zhiwei Zhou & Yuping Cai & Xiaoyang Su & Nan Liu & Zheng-Jiang Zhu, 2022. "Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Philipp Hammerschmidt & Sophie M. Steculorum & Cécile L. Bandet & Almudena Río-Martín & Lukas Steuernagel & Vivien Kohlhaas & Marvin Feldmann & Luis Varela & Adam Majcher & Marta Quatorze Correia & Rh, 2023. "CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Mingdu Luo & Yandong Yin & Zhiwei Zhou & Haosong Zhang & Xi Chen & Hongmiao Wang & Zheng-Jiang Zhu, 2023. "A mass spectrum-oriented computational method for ion mobility-resolved untargeted metabolomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43378-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.