A universal biomolecular integral feedback controller for robust perfect adaptation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-019-1321-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andras Gyorgy, 2023. "Competition and evolutionary selection among core regulatory motifs in gene expression control," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Shivang Hina-Nilesh Joshi & Chentao Yong & Andras Gyorgy, 2022. "Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Maurice Filo & Sant Kumar & Mustafa Khammash, 2022. "A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Robyn P. Araujo & Lance A. Liotta, 2023. "Universal structures for adaptation in biochemical reaction networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Lauren Gambill & August Staubus & Kim Wai Mo & Andrea Ameruoso & James Chappell, 2023. "A split ribozyme that links detection of a native RNA to orthogonal protein outputs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Kirill Sechkar & Harrison Steel & Giansimone Perrino & Guy-Bart Stan, 2024. "A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Stanislav Anastassov & Maurice Filo & Ching-Hsiang Chang & Mustafa Khammash, 2023. "A cybergenetic framework for engineering intein-mediated integral feedback control systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Zhou Fang & Ankit Gupta & Sant Kumar & Mustafa Khammash, 2024. "Advanced methods for gene network identification and noise decomposition from single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Chelsea Y. Hu & Richard M. Murray, 2022. "Layered feedback control overcomes performance trade-off in synthetic biomolecular networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:570:y:2019:i:7762:d:10.1038_s41586-019-1321-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.