IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43088-3.html
   My bibliography  Save this article

Isochronic development of cortical synapses in primates and mice

Author

Listed:
  • Gregg Wildenberg

    (The University of Chicago
    Biosciences Division)

  • Hanyu Li

    (The University of Chicago
    Biosciences Division)

  • Vandana Sampathkumar

    (The University of Chicago
    Biosciences Division)

  • Anastasia Sorokina

    (The University of Chicago
    Biosciences Division)

  • Narayanan Kasthuri

    (The University of Chicago
    Biosciences Division)

Abstract

The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit—would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the male Mus musculus (mouse) and Rhesus macaque (primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.

Suggested Citation

  • Gregg Wildenberg & Hanyu Li & Vandana Sampathkumar & Anastasia Sorokina & Narayanan Kasthuri, 2023. "Isochronic development of cortical synapses in primates and mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43088-3
    DOI: 10.1038/s41467-023-43088-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43088-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43088-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunfeng Hua & Philip Laserstein & Moritz Helmstaedter, 2015. "Large-volume en-bloc staining for electron microscopy-based connectomics," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Michela Fagiolini & Takao K. Hensch, 2000. "Inhibitory threshold for critical-period activation in primary visual cortex," Nature, Nature, vol. 404(6774), pages 183-186, March.
    3. Simone Holler & German Köstinger & Kevan A. C. Martin & Gregor F. P. Schuhknecht & Ken J. Stratford, 2021. "Structure and function of a neocortical synapse," Nature, Nature, vol. 591(7848), pages 111-116, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carles Bosch & Tobias Ackels & Alexandra Pacureanu & Yuxin Zhang & Christopher J. Peddie & Manuel Berning & Norman Rzepka & Marie-Christine Zdora & Isabell Whiteley & Malte Storm & Anne Bonnin & Chris, 2022. "Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. José Moya-Díaz & Ben James & Federico Esposti & Jamie Johnston & Leon Lagnado, 2022. "Diurnal changes in the efficiency of information transmission at a sensory synapse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Chad P. Grabner & Daiki Futagi & Jun Shi & Vytas Bindokas & Katsunori Kitano & Eric A. Schwartz & Steven H. DeVries, 2023. "Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Tyler R. Sizemore & Julius Jonaitis & Andrew M. Dacks, 2023. "Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. P. J. Schubert & R. Saxena & J. Kornfeld, 2024. "DeepFocus: fast focus and astigmatism correction for electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43088-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.