IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42721-5.html
   My bibliography  Save this article

Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer’s disease mouse model

Author

Listed:
  • Shiri Shoob

    (Faculty of Medicine, Tel Aviv University)

  • Nadav Buchbinder

    (Faculty of Medicine, Tel Aviv University
    Tel Aviv University)

  • Ortal Shinikamin

    (Faculty of Medicine, Tel Aviv University)

  • Or Gold

    (The Hebrew University of Jerusalem)

  • Halit Baeloha

    (Faculty of Medicine, Tel Aviv University)

  • Tomer Langberg

    (Faculty of Medicine, Tel Aviv University
    Tel Aviv University)

  • Daniel Zarhin

    (Faculty of Medicine, Tel Aviv University)

  • Ilana Shapira

    (Faculty of Medicine, Tel Aviv University)

  • Gabriella Braun

    (Faculty of Medicine, Tel Aviv University
    Tel Aviv University)

  • Naomi Habib

    (The Hebrew University of Jerusalem)

  • Inna Slutsky

    (Faculty of Medicine, Tel Aviv University
    Tel Aviv University)

Abstract

The mechanisms that confer cognitive resilience to Alzheimer’s Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.

Suggested Citation

  • Shiri Shoob & Nadav Buchbinder & Ortal Shinikamin & Or Gold & Halit Baeloha & Tomer Langberg & Daniel Zarhin & Ilana Shapira & Gabriella Braun & Naomi Habib & Inna Slutsky, 2023. "Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer’s disease mouse model," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42721-5
    DOI: 10.1038/s41467-023-42721-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42721-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42721-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Denise J. Cai & Daniel Aharoni & Tristan Shuman & Justin Shobe & Jeremy Biane & Weilin Song & Brandon Wei & Michael Veshkini & Mimi La-Vu & Jerry Lou & Sergio E. Flores & Isaac Kim & Yoshitake Sano & , 2016. "A shared neural ensemble links distinct contextual memories encoded close in time," Nature, Nature, vol. 534(7605), pages 115-118, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joana Mendes Duarte & Robin Nguyen & Marios Kyprou & Kaizhen Li & Anastasija Milentijevic & Carlo Cerquetella & Thomas Forro & Stéphane Ciocchi, 2024. "Hippocampal contextualization of social rewards in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Caio Vaz Rimoli & Claudio Moretti & Fernando Soldevila & Enora Brémont & Cathie Ventalon & Sylvain Gigan, 2024. "Demixing fluorescence time traces transmitted by multimode fibers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Kyuhyun Choi & Eugenio Piasini & Edgar Díaz-Hernández & Luigim Vargas Cifuentes & Nathan T. Henderson & Elizabeth N. Holly & Manivannan Subramaniyan & Charles R. Gerfen & Marc V. Fuccillo, 2023. "Distributed processing for value-based choice by prelimbic circuits targeting anterior-posterior dorsal striatal subregions in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Ella Gabitov & Arnaud Boutin & Basile Pinsard & Nitzan Censor & Stuart M Fogel & Geneviève Albouy & Bradley R King & Julie Carrier & Leonardo G Cohen & Avi Karni & Julien Doyon, 2019. "Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-19, January.
    5. Kaizhen Li & Konstantinos Koukoutselos & Masanori Sakaguchi & Stéphane Ciocchi, 2024. "Distinct ventral hippocampal inhibitory microcircuits regulating anxiety and fear behaviors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Terra A. Schall & King-Lun Li & Xiguang Qi & Brian T. Lee & William J. Wright & Erin E. Alpaugh & Rachel J. Zhao & Jianwei Liu & Qize Li & Bo Zeng & Lirong Wang & Yanhua H. Huang & Oliver M. Schlüter , 2024. "Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Paul J. Lamothe-Molina & Andreas Franzelin & Lennart Beck & Dong Li & Lea Auksutat & Tim Fieblinger & Laura Laprell & Joachim Alhbeck & Christine E. Gee & Matthias Kneussel & Andreas K. Engel & Claus , 2022. "ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Akinobu Suzuki & Sakurako Kosugi & Emi Murayama & Eri Sasakawa & Noriaki Ohkawa & Ayumu Konno & Hirokazu Hirai & Kaoru Inokuchi, 2022. "A cortical cell ensemble in the posterior parietal cortex controls past experience-dependent memory updating," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yanjun Sun & Lisa M. Giocomo, 2022. "Neural circuit dynamics of drug-context associative learning in the mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Yuanlong Zhang & Xiaofei Song & Jiachen Xie & Jing Hu & Jiawei Chen & Xiang Li & Haiyu Zhang & Qiqun Zhou & Lekang Yuan & Chui Kong & Yibing Shen & Jiamin Wu & Lu Fang & Qionghai Dai, 2023. "Large depth-of-field ultra-compact microscope by progressive optimization and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Johannes Friedrich & Andrea Giovannucci & Eftychios A Pnevmatikakis, 2021. "Online analysis of microendoscopic 1-photon calcium imaging data streams," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-32, January.
    14. Yi-Fan Zeng & Ke-Xin Yang & Yilong Cui & Xiao-Na Zhu & Rui Li & Hanqing Zhang & Dong Chuan Wu & Raymond C. Stevens & Ji Hu & Ning Zhou, 2024. "Conjunctive encoding of exploratory intentions and spatial information in the hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42721-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.