IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42663-y.html
   My bibliography  Save this article

Coral endosymbiont growth is enhanced by metabolic interactions with bacteria

Author

Listed:
  • Jennifer L. Matthews

    (University of Technology Sydney)

  • Abeeha Khalil

    (University of Technology Sydney)

  • Nachshon Siboni

    (University of Technology Sydney)

  • Jeremy Bougoure

    (University of Western Australia)

  • Paul Guagliardo

    (University of Western Australia)

  • Unnikrishnan Kuzhiumparambil

    (University of Technology Sydney)

  • Matthew DeMaere

    (University of Technology Sydney)

  • Nine M. Le Reun

    (University of Technology Sydney)

  • Justin R. Seymour

    (University of Technology Sydney)

  • David J. Suggett

    (University of Technology Sydney
    King Abdullah University of Science and Technology)

  • Jean-Baptiste Raina

    (University of Technology Sydney)

Abstract

Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.

Suggested Citation

  • Jennifer L. Matthews & Abeeha Khalil & Nachshon Siboni & Jeremy Bougoure & Paul Guagliardo & Unnikrishnan Kuzhiumparambil & Matthew DeMaere & Nine M. Le Reun & Justin R. Seymour & David J. Suggett & J, 2023. "Coral endosymbiont growth is enhanced by metabolic interactions with bacteria," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42663-y
    DOI: 10.1038/s41467-023-42663-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42663-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42663-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. A. Amin & L. R. Hmelo & H. M. van Tol & B. P. Durham & L. T. Carlson & K. R. Heal & R. L. Morales & C. T. Berthiaume & M. S. Parker & B. Djunaedi & A. E. Ingalls & M. R. Parsek & M. A. Moran & E. V, 2015. "Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria," Nature, Nature, vol. 522(7554), pages 98-101, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    2. Kyoko Yarimizu & So Fujiyoshi & Mikihiko Kawai & Luis Norambuena-Subiabre & Emma-Karin Cascales & Joaquin-Ignacio Rilling & Jonnathan Vilugrón & Henry Cameron & Karen Vergara & Jesus Morón-López & Jac, 2020. "Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    3. Xavier Mayali & Ty J. Samo & Jeff A. Kimbrel & Megan M. Morris & Kristina Rolison & Courtney Swink & Christina Ramon & Young-Mo Kim & Nathalie Munoz-Munoz & Carrie Nicora & Sam Purvine & Mary Lipton &, 2023. "Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Sheng-Nan Chen & Pan-Lu Shang & Peng-Liang Kang & Man-Man Du, 2020. "Metabolic Functional Community Diversity of Associated Bacteria during the Degradation of Phytoplankton from a Drinking Water Reservoir," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
    6. Flora Vincent & Matti Gralka & Guy Schleyer & Daniella Schatz & Miguel Cabrera-Brufau & Constanze Kuhlisch & Andreas Sichert & Silvia Vidal-Melgosa & Kyle Mayers & Noa Barak-Gavish & J. Michel Flores , 2023. "Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Yi-Chun Yeh & Jed A. Fuhrman, 2022. "Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Shousong Zhu & Lauren Higa & Antonia Barela & Caitlyn Lee & Yinhua Chen & Zhi-Yan Du, 2023. "Microalgal Consortia for Waste Treatment and Valuable Bioproducts," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Yunyan Deng & Kui Wang & Zhangxi Hu & Ying-Zhong Tang, 2022. "Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures," IJERPH, MDPI, vol. 19(8), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42663-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.