IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42617-4.html
   My bibliography  Save this article

Gate-controlled suppression of light-driven proton transport through graphene electrodes

Author

Listed:
  • S. Huang

    (The University of Manchester
    The University of Manchester)

  • E. Griffin

    (The University of Manchester
    The University of Manchester)

  • J. Cai

    (The University of Manchester
    National University of Defence Technology)

  • B. Xin

    (The University of Manchester
    The University of Manchester)

  • J. Tong

    (The University of Manchester
    The University of Manchester)

  • Y. Fu

    (The University of Manchester
    The University of Manchester)

  • V. Kravets

    (The University of Manchester)

  • F. M. Peeters

    (Universidade Federal do Ceara
    Universiteit Antwerpen)

  • M. Lozada-Hidalgo

    (The University of Manchester
    The University of Manchester
    Khalifa University)

Abstract

Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene’s electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light.

Suggested Citation

  • S. Huang & E. Griffin & J. Cai & B. Xin & J. Tong & Y. Fu & V. Kravets & F. M. Peeters & M. Lozada-Hidalgo, 2023. "Gate-controlled suppression of light-driven proton transport through graphene electrodes," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42617-4
    DOI: 10.1038/s41467-023-42617-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42617-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42617-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Hu & M. Lozada-Hidalgo & F. C. Wang & A. Mishchenko & F. Schedin & R. R. Nair & E. W. Hill & D. W. Boukhvalov & M. I. Katsnelson & R. A. W. Dryfe & I. V. Grigorieva & H. A. Wu & A. K. Geim, 2014. "Proton transport through one-atom-thick crystals," Nature, Nature, vol. 516(7530), pages 227-230, December.
    2. Li Qiang Zhu & Chang Jin Wan & Li Qiang Guo & Yi Shi & Qing Wan, 2014. "Artificial synapse network on inorganic proton conductor for neuromorphic systems," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    3. J. Cai & E. Griffin & V. H. Guarochico-Moreira & D. Barry & B. Xin & M. Yagmurcukardes & S. Zhang & A. K. Geim & F. M. Peeters & M. Lozada-Hidalgo, 2022. "Wien effect in interfacial water dissociation through proton-permeable graphene electrodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. P. Z. Sun & Q. Yang & W. J. Kuang & Y. V. Stebunov & W. Q. Xiong & J. Yu & R. R. Nair & M. I. Katsnelson & S. J. Yuan & I. V. Grigorieva & M. Lozada-Hidalgo & F. C. Wang & A. K. Geim, 2020. "Limits on gas impermeability of graphene," Nature, Nature, vol. 579(7798), pages 229-232, March.
    5. O. J. Wahab & E. Daviddi & B. Xin & P. Z. Sun & E. Griffin & A. W. Colburn & D. Barry & M. Yagmurcukardes & F. M. Peeters & A. K. Geim & M. Lozada-Hidalgo & P. R. Unwin, 2023. "Proton transport through nanoscale corrugations in two-dimensional crystals," Nature, Nature, vol. 620(7975), pages 782-786, August.
    6. L. Mogg & S. Zhang & G.-P. Hao & K. Gopinadhan & D. Barry & B. L. Liu & H. M. Cheng & A. K. Geim & M. Lozada-Hidalgo, 2019. "Perfect proton selectivity in ion transport through two-dimensional crystals," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqiang Li & Siwei Yang & Wancheng Bao & Quan Tao & Xiuyun Jiang & Jipeng Li & Peng He & Gang Wang & Kai Qi & Hui Dong & Guqiao Ding & Xiaoming Xie, 2024. "Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Z. F. Wu & P. Z. Sun & O. J. Wahab & Y. T. Tan & D. Barry & D. Periyanagounder & P. B. Pillai & Q. Dai & W. Q. Xiong & L. F. Vega & K. Lulla & S. J. Yuan & R. R. Nair & E. Daviddi & P. R. Unwin & A. K, 2023. "Proton and molecular permeation through the basal plane of monolayer graphene oxide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. J. Cai & E. Griffin & V. H. Guarochico-Moreira & D. Barry & B. Xin & M. Yagmurcukardes & S. Zhang & A. K. Geim & F. M. Peeters & M. Lozada-Hidalgo, 2022. "Wien effect in interfacial water dissociation through proton-permeable graphene electrodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Zhihua Zhou & Yongtao Tan & Qian Yang & Achintya Bera & Zecheng Xiong & Mehmet Yagmurcukardes & Minsoo Kim & Yichao Zou & Guanghua Wang & Artem Mishchenko & Ivan Timokhin & Canbin Wang & Hao Wang & Ch, 2022. "Gas permeation through graphdiyne-based nanoporous membranes," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Eli Hoenig & Yu Han & Kangli Xu & Jingyi Li & Mingzhan Wang & Chong Liu, 2024. "In situ generation of (sub) nanometer pores in MoS2 membranes for ion-selective transport," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yongqiang Li & Siwei Yang & Wancheng Bao & Quan Tao & Xiuyun Jiang & Jipeng Li & Peng He & Gang Wang & Kai Qi & Hui Dong & Guqiao Ding & Xiaoming Xie, 2024. "Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. P. Z. Sun & M. Yagmurcukardes & R. Zhang & W. J. Kuang & M. Lozada-Hidalgo & B. L. Liu & H.-M. Cheng & F. C. Wang & F. M. Peeters & I. V. Grigorieva & A. K. Geim, 2021. "Exponentially selective molecular sieving through angstrom pores," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Yuan Hou & Jingzhuo Zhou & Zezhou He & Juzheng Chen & Mengya Zhu & HengAn Wu & Yang Lu, 2024. "Tuning instability in suspended monolayer 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Linghui Sun & Ninghong Jia & Chun Feng & Lu Wang & Siyuan Liu & Weifeng Lyu, 2023. "Exploration of Oil/Water/Gas Occurrence State in Shale Reservoir by Molecular Dynamics Simulation," Energies, MDPI, vol. 16(21), pages 1-14, October.
    11. Liyan Dai & Jinyan Zhao & Jingrui Li & Bohan Chen & Shijie Zhai & Zhongying Xue & Zengfeng Di & Boyuan Feng & Yanxiao Sun & Yunyun Luo & Ming Ma & Jie Zhang & Sunan Ding & Libo Zhao & Zhuangde Jiang &, 2022. "Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Shaila Jamal & Hossain Mohiuddin, 2020. "Active transportation indicators and establishing baseline in a developing country context: A study of Rajshahi, Bangladesh," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1894-1920, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42617-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.