IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42321-3.html
   My bibliography  Save this article

Strain topological metamaterials and revealing hidden topology in higher-order coordinates

Author

Listed:
  • Florian Allein

    (Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d’Electronique de Microélectronique et de Nanotechnologie)

  • Adamantios Anastasiadis

    (Le Mans Université)

  • Rajesh Chaunsali

    (Indian Institute of Science)

  • Ian Frankel

    (University of California, San Diego)

  • Nicholas Boechler

    (University of California, San Diego)

  • Fotios K. Diakonos

    (University of Athens)

  • Georgios Theocharis

    (Le Mans Université)

Abstract

Topological physics has revolutionized materials science, introducing topological phases of matter in diverse settings ranging from quantum to photonic and phononic systems. Herein, we present a family of topological systems, which we term “strain topological metamaterials”, whose topological properties are hidden and unveiled only under higher-order (strain) coordinate transformations. We firstly show that the canonical mass dimer, a model that can describe various settings such as electrical circuits and optics, among others, belongs to this family where strain coordinates reveal a topological nontriviality for the edge states at free boundaries. Subsequently, we introduce a mechanical analog of the Majorana-supporting Kitaev chain, which supports topological edge states for both fixed and free boundaries within the proposed framework. Thus, our findings not only extend the way topological edge states are identified, but also promote the fabrication of novel topological metamaterials in various fields, with more complex, tailored boundaries.

Suggested Citation

  • Florian Allein & Adamantios Anastasiadis & Rajesh Chaunsali & Ian Frankel & Nicholas Boechler & Fotios K. Diakonos & Georgios Theocharis, 2023. "Strain topological metamaterials and revealing hidden topology in higher-order coordinates," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42321-3
    DOI: 10.1038/s41467-023-42321-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42321-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42321-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiromi Yasuda & Philip R. Buskohl & Andrew Gillman & Todd D. Murphey & Susan Stepney & Richard A. Vaia & Jordan R. Raney, 2021. "Mechanical computing," Nature, Nature, vol. 598(7879), pages 39-48, October.
    2. Hoi Chun Po & Ashvin Vishwanath & Haruki Watanabe, 2017. "Erratum: Symmetry-based indicators of band topology in the 230 space groups," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    3. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    4. Smith, Dallas & Webb, Benjamin, 2019. "Hidden symmetries in real and theoretical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 855-867.
    5. Michel Fruchart & Yujie Zhou & Vincenzo Vitelli, 2020. "Dualities and non-Abelian mechanics," Nature, Nature, vol. 577(7792), pages 636-640, January.
    6. Hoi Chun Po & Ashvin Vishwanath & Haruki Watanabe, 2017. "Symmetry-based indicators of band topology in the 230 space groups," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Lei Chen & Fang Xie & Shouvik Sur & Haoyu Hu & Silke Paschen & Jennifer Cano & Qimiao Si, 2024. "Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Fa-Jie Wang & Zhen-Yu Xiao & Raquel Queiroz & B. Andrei Bernevig & Ady Stern & Zhi-Da Song, 2024. "Anderson critical metal phase in trivial states protected by average magnetic crystalline symmetry," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. M. dos Santos Dias & N. Biniskos & F. J. dos Santos & K. Schmalzl & J. Persson & F. Bourdarot & N. Marzari & S. Blügel & T. Brückel & S. Lounis, 2023. "Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn5Ge3," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Sungjoon Park & Yoonseok Hwang & Hong Chul Choi & Bohm-Jung Yang, 2021. "Topological acoustic triple point," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Lizhen Lu & Kun Ding & Emanuele Galiffi & Xikui Ma & Tianyu Dong & J. B. Pendry, 2021. "Revealing topology with transformation optics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Zhongyi Zhang & Zhenfei Wu & Chen Fang & Fu-chun Zhang & Jiangping Hu & Yuxuan Wang & Shengshan Qin, 2024. "Topological superconductivity from unconventional band degeneracy with conventional pairing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Ahalya Prabhakar & Todd Murphey, 2022. "Mechanical intelligence for learning embodied sensor-object relationships," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42321-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.