IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41765-x.html
   My bibliography  Save this article

Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection

Author

Listed:
  • Weiqing Xu

    (Central China Normal University)

  • Xiaoli Cai

    (Medical College, Wuhan University of Science and Technology)

  • Yu Wu

    (Central China Normal University)

  • Yating Wen

    (Central China Normal University)

  • Rina Su

    (Central China Normal University)

  • Yu Zhang

    (Central China Normal University)

  • Yuteng Huang

    (Medical College, Wuhan University of Science and Technology)

  • Qihui Zheng

    (Medical College, Wuhan University of Science and Technology)

  • Liuyong Hu

    (Wuhan Institute of Technology)

  • Xiaowen Cui

    (Chinese Academy of Sciences Institution)

  • Lirong Zheng

    (Chinese Academy of Sciences Institution)

  • Shipeng Zhang

    (Peking University)

  • Wenling Gu

    (Central China Normal University)

  • Weiyu Song

    (China University of Petroleum)

  • Shaojun Guo

    (Peking University)

  • Chengzhou Zhu

    (Central China Normal University)

Abstract

Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal–organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative –OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.

Suggested Citation

  • Weiqing Xu & Xiaoli Cai & Yu Wu & Yating Wen & Rina Su & Yu Zhang & Yuteng Huang & Qihui Zheng & Liuyong Hu & Xiaowen Cui & Lirong Zheng & Shipeng Zhang & Wenling Gu & Weiyu Song & Shaojun Guo & Cheng, 2023. "Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41765-x
    DOI: 10.1038/s41467-023-41765-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41765-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41765-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Frank M. Raushel, 2011. "Catalytic detoxification," Nature, Nature, vol. 469(7330), pages 310-311, January.
    3. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhang & Shenqiang Wang & Yinxian Yang & Sheng Zhao & Jiahuan You & Junxia Wang & Jingwei Cai & Hao Wang & Jie Wang & Wei Zhang & Jicheng Yu & Chunmao Han & Yuqi Zhang & Zhen Gu, 2023. "Scarless wound healing programmed by core-shell microneedles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41765-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.