IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41693-w.html
   My bibliography  Save this article

Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests

Author

Listed:
  • Jörg Müller

    (Biocenter, University of Würzburg
    Bavarian Forest National Park)

  • Oliver Mitesser

    (Biocenter, University of Würzburg)

  • H. Martin Schaefer

    (Fundación Jocotoco, Valladolid N24-414 y Luis Cordero)

  • Sebastian Seibold

    (Ecosystem Dynamics and Forest Management Research Group
    Berchtesgaden National Park)

  • Annika Busse

    (Saxon-Switzerland National Park)

  • Peter Kriegel

    (Biocenter, University of Würzburg)

  • Dominik Rabl

    (Biocenter, University of Würzburg)

  • Rudy Gelis

    (Yanayacu Research Center)

  • Alejandro Arteaga

    (Biodiversity Field Lab (BioFL), Khamai Foundation)

  • Juan Freile

    (Pasaje El Moro E4-216 y Norberto Salazar)

  • Gabriel Augusto Leite

    (Rainforest Connection, Science Department)

  • Tomaz Nascimento Melo

    (Rainforest Connection, Science Department)

  • Jack LeBien

    (Rainforest Connection, Science Department)

  • Marconi Campos-Cerqueira

    (Rainforest Connection, Science Department)

  • Nico Blüthgen

    (Technische Universität Darmstadt)

  • Constance J. Tremlett

    (Technische Universität Darmstadt)

  • Dennis Böttger

    (Friedrich-Schiller-University Jena)

  • Heike Feldhaar

    (University of Bayreuth)

  • Nina Grella

    (University of Bayreuth)

  • Ana Falconí-López

    (Biocenter, University of Würzburg
    Medio Ambiente y Salud-BIOMAS-Universidad de las Américas)

  • David A. Donoso

    (Medio Ambiente y Salud-BIOMAS-Universidad de las Américas
    Escuela Politécnica Nacional)

  • Jerome Moriniere

    (AIM - Advanced Identification Methods GmbH)

  • Zuzana Buřivalová

    (University of Wisconsin-Madison, Department of Forest and Wildlife Ecology and The Nelson Institute for Environmental Studies)

Abstract

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures – an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.

Suggested Citation

  • Jörg Müller & Oliver Mitesser & H. Martin Schaefer & Sebastian Seibold & Annika Busse & Peter Kriegel & Dominik Rabl & Rudy Gelis & Alejandro Arteaga & Juan Freile & Gabriel Augusto Leite & Tomaz Nasc, 2023. "Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41693-w
    DOI: 10.1038/s41467-023-41693-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41693-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41693-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Seibold & Werner Rammer & Torsten Hothorn & Rupert Seidl & Michael D. Ulyshen & Janina Lorz & Marc W. Cadotte & David B. Lindenmayer & Yagya P. Adhikari & Roxana Aragón & Soyeon Bae & Petr B, 2021. "The contribution of insects to global forest deadwood decomposition," Nature, Nature, vol. 597(7874), pages 77-81, September.
    2. Johannes Uhler & Sarah Redlich & Jie Zhang & Torsten Hothorn & Cynthia Tobisch & Jörg Ewald & Simon Thorn & Sebastian Seibold & Oliver Mitesser & Jérôme Morinière & Vedran Bozicevic & Caryl S. Benjami, 2021. "Relationship of insect biomass and richness with land use along a climate gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Wannes Hubau & Simon L. Lewis & Oliver L. Phillips & Kofi Affum-Baffoe & Hans Beeckman & Aida Cuní-Sanchez & Armandu K. Daniels & Corneille E. N. Ewango & Sophie Fauset & Jacques M. Mukinzi & Douglas , 2020. "Asynchronous carbon sink saturation in African and Amazonian tropical forests," Nature, Nature, vol. 579(7797), pages 80-87, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
    2. Sara Karam & Ousmane Seidou & Nidhi Nagabhatla & Duminda Perera & Raphael M. Tshimanga, 2022. "Assessing the impacts of climate change on climatic extremes in the Congo River Basin," Climatic Change, Springer, vol. 170(3), pages 1-24, February.
    3. Emmanuel Kasongo Yakusu & Joris Van Acker & Hans Van de Vyver & Nils Bourland & José Mbifo Ndiapo & Théophile Besango Likwela & Michel Lokonda Wa Kipifo & Amand Mbuya Kankolongo & Jan Van den Bulcke &, 2023. "Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin," Climatic Change, Springer, vol. 176(10), pages 1-28, October.
    4. Felix Neff & Fränzi Korner-Nievergelt & Emmanuel Rey & Matthias Albrecht & Kurt Bollmann & Fabian Cahenzli & Yannick Chittaro & Martin M. Gossner & Carlos Martínez-Núñez & Eliane S. Meier & Christian , 2022. "Different roles of concurring climate and regional land-use changes in past 40 years’ insect trends," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. César Augusto Ruiz-Agudelo & Francisco Paula Gutiérrez-Bonilla, 2024. "The remnant natural capital of the Magdalena-Cauca basin: immense losses for the 80% of Colombian inhabitants," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(1), pages 135-153, March.
    6. Yue Li & Paulo M. Brando & Douglas C. Morton & David M. Lawrence & Hui Yang & James T. Randerson, 2022. "Deforestation-induced climate change reduces carbon storage in remaining tropical forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Harding, Torfinn & Herzberg, Julika & Kuralbayeva, Karlygash, 2021. "Commodity prices and robust environmental regulation: Evidence from deforestation in Brazil," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    8. Rius, Bianca Fazio & Filho, João Paulo Darela & Fleischer, Katrin & Hofhansl, Florian & Blanco, Carolina Casagrande & Rammig, Anja & Domingues, Tomas Ferreira & Lapola, David Montenegro, 2023. "Higher functional diversity improves modeling of Amazon forest carbon storage," Ecological Modelling, Elsevier, vol. 481(C).
    9. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Giuntoli, J. & Barredo, J.I. & Avitabile, V. & Camia, A. & Cazzaniga, N.E. & Grassi, G. & Jasinevičius, G. & Jonsson, R. & Marelli, L. & Robert, N. & Agostini, A. & Mubareka, S., 2022. "The quest for sustainable forest bioenergy: win-win solutions for climate and biodiversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Huanyuan Zhang-Zheng & Stephen Adu-Bredu & Akwasi Duah-Gyamfi & Sam Moore & Shalom D. Addo-Danso & Lucy Amissah & Riccardo Valentini & Gloria Djagbletey & Kelvin Anim-Adjei & John Quansah & Bernice Sa, 2024. "Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Selma Bultan & Julia E. M. S. Nabel & Kerstin Hartung & Raphael Ganzenmüller & Liang Xu & Sassan Saatchi & Julia Pongratz, 2022. "Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41693-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.