IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41490-5.html
   My bibliography  Save this article

Hydrodynamic tearing of bacteria on nanotips for sustainable water disinfection

Author

Listed:
  • Lu Peng

    (Tsinghua University)

  • Haojie Zhu

    (Tsinghua University)

  • Haobin Wang

    (Tsinghua University)

  • Zhenbin Guo

    (Tsinghua University
    Shenzhen University)

  • Qianyuan Wu

    (Tsinghua University)

  • Cheng Yang

    (Tsinghua University)

  • Hong-Ying Hu

    (Tsinghua University
    Tsinghua University)

Abstract

Water disinfection is conventionally achieved by oxidation or irradiation, which is often associated with a high carbon footprint and the formation of toxic byproducts. Here, we describe a nano-structured material that is highly effective at killing bacteria in water through a hydrodynamic mechanism. The material consists of carbon-coated, sharp Cu(OH)2 nanowires grown on a copper foam substrate. We show that mild water flow (e.g. driven from a storage tank) can efficiently tear up bacteria through a high dispersion force between the nanotip surface and the cell envelope. Bacterial cell rupture is due to tearing of the cell envelope rather than collisions. This mechanism produces rapid inactivation of bacteria in water, and achieved complete disinfection in a 30-day field test. Our approach exploits fluidic energy and does not require additional energy supply, thus offering an efficient and low-cost system that could potentially be incorporated in water treatment processes in wastewater facilities and rural communities.

Suggested Citation

  • Lu Peng & Haojie Zhu & Haobin Wang & Zhenbin Guo & Qianyuan Wu & Cheng Yang & Hong-Ying Hu, 2023. "Hydrodynamic tearing of bacteria on nanotips for sustainable water disinfection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41490-5
    DOI: 10.1038/s41467-023-41490-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41490-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41490-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Jenkins & J. Mantell & C. Neal & A. Gholinia & P. Verkade & A. H. Nobbs & B. Su, 2020. "Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Meagan S. Mauter & Ines Zucker & François Perreault & Jay R. Werber & Jae-Hong Kim & Menachem Elimelech, 2018. "The role of nanotechnology in tackling global water challenges," Nature Sustainability, Nature, vol. 1(4), pages 166-175, April.
    3. Elena P. Ivanova & Jafar Hasan & Hayden K. Webb & Gediminas Gervinskas & Saulius Juodkazis & Vi Khanh Truong & Alex H.F. Wu & Robert N. Lamb & Vladimir A. Baulin & Gregory S. Watson & Jolanta A. Watso, 2013. "Bactericidal activity of black silicon," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    4. Ge Fang & Weifeng Li & Xiaomei Shen & Jose Manuel Perez-Aguilar & Yu Chong & Xingfa Gao & Zhifang Chai & Chunying Chen & Cuicui Ge & Ruhong Zhou, 2018. "Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Wang & Wenhe Xie & Ping Wu & Geyu Lin & Yan Cui & Jiawei Tao & Gaofeng Zeng & Yonghui Deng & Huibin Qiu, 2022. "Soft nanobrush-directed multifunctional MOF nanoarrays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ying-Jie Zhang & Gui-Xiang Huang & Lea R. Winter & Jie-Jie Chen & Lili Tian & Shu-Chuan Mei & Ze Zhang & Fei Chen & Zhi-Yan Guo & Rong Ji & Ye-Zi You & Wen-Wei Li & Xian-Wei Liu & Han-Qing Yu & Menach, 2022. "Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yuan Min & Shu-Chuan Mei & Xiao-Qiang Pan & Jie-Jie Chen & Han-Qing Yu & Yujie Xiong, 2023. "Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Liangyu Li & Xiaotong Liu & Guanghe Liu & Suying Xu & Gaofei Hu & Leyu Wang, 2024. "Valence-engineered catalysis-selectivity regulation of molybdenum oxide nanozyme for acute kidney injury therapy and post-cure assessment," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Elvira Pantuso & Ejaz Ahmed & Enrica Fontananova & Adele Brunetti & Ibrahim Tahir & Durga Prasad Karothu & Nisreen Amer Alnaji & Ghada Dushaq & Mahmoud Rasras & Panče Naumov & Gianluca Profio, 2023. "Smart dynamic hybrid membranes with self-cleaning capability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Songjing Zhong & Zeyu Zhang & Qinyu Zhao & Zhaoyang Yue & Cheng Xiong & Genglin Chen & Jie Wang & Linlin Li, 2024. "Lattice expansion in ruthenium nanozymes improves catalytic activity and electro-responsiveness for boosting cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41490-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.