IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i4d10.1038_s41893-018-0046-8.html
   My bibliography  Save this article

The role of nanotechnology in tackling global water challenges

Author

Listed:
  • Meagan S. Mauter

    (Carnegie Mellon University
    Carnegie Mellon University)

  • Ines Zucker

    (Yale University)

  • François Perreault

    (Arizona State University)

  • Jay R. Werber

    (Yale University)

  • Jae-Hong Kim

    (Yale University
    Yale University)

  • Menachem Elimelech

    (Yale University
    Yale University)

Abstract

Sustainable provision of safe, clean and adequate water supply is a global challenge. Water treatment and desalination technologies remain chemically and energy intensive, ineffective in removing key trace contaminants, and poorly suited to deployment in decentralized (distributed) water treatment systems globally. Several recent efforts have sought to leverage the reactive and tunable properties of nanomaterials to address these technological shortcomings. This Review assesses the potential applications of nanomaterials in advancing sustainable water treatment systems and proposes ways to evaluate the environmental risks and social acceptance of nanotechnology-enabled water treatment processes. Future areas of research necessary to realize safe deployment of promising nanomaterial applications are also identified.

Suggested Citation

  • Meagan S. Mauter & Ines Zucker & François Perreault & Jay R. Werber & Jae-Hong Kim & Menachem Elimelech, 2018. "The role of nanotechnology in tackling global water challenges," Nature Sustainability, Nature, vol. 1(4), pages 166-175, April.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:4:d:10.1038_s41893-018-0046-8
    DOI: 10.1038/s41893-018-0046-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0046-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0046-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying-Jie Zhang & Gui-Xiang Huang & Lea R. Winter & Jie-Jie Chen & Lili Tian & Shu-Chuan Mei & Ze Zhang & Fei Chen & Zhi-Yan Guo & Rong Ji & Ye-Zi You & Wen-Wei Li & Xian-Wei Liu & Han-Qing Yu & Menach, 2022. "Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yuan Min & Shu-Chuan Mei & Xiao-Qiang Pan & Jie-Jie Chen & Han-Qing Yu & Yujie Xiong, 2023. "Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Elvira Pantuso & Ejaz Ahmed & Enrica Fontananova & Adele Brunetti & Ibrahim Tahir & Durga Prasad Karothu & Nisreen Amer Alnaji & Ghada Dushaq & Mahmoud Rasras & Panče Naumov & Gianluca Profio, 2023. "Smart dynamic hybrid membranes with self-cleaning capability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Lu Peng & Haojie Zhu & Haobin Wang & Zhenbin Guo & Qianyuan Wu & Cheng Yang & Hong-Ying Hu, 2023. "Hydrodynamic tearing of bacteria on nanotips for sustainable water disinfection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:4:d:10.1038_s41893-018-0046-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.