IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41064-5.html
   My bibliography  Save this article

Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid

Author

Listed:
  • Michael E. Pyne

    (Concordia University
    Concordia University
    University of Western Ontario)

  • James A. Bagley

    (Concordia University
    Concordia University)

  • Lauren Narcross

    (Concordia University
    Concordia University
    Amyris, Inc.)

  • Kaspar Kevvai

    (Concordia University
    Concordia University
    Pivot Bio)

  • Kealan Exley

    (Concordia University
    Concordia University
    Novo Nordisk Foundation Center for Biosustainability)

  • Meghan Davies

    (Concordia University
    Concordia University
    BenchSci)

  • Qingzhao Wang

    (bp Biosciences Center, San Diego)

  • Malcolm Whiteway

    (Concordia University
    Concordia University)

  • Vincent J. J. Martin

    (Concordia University
    Concordia University)

Abstract

Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism’s prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L−1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L−1), yield (0.134 g g−1 glucose) and productivity (0.511 g L−1 h−1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.

Suggested Citation

  • Michael E. Pyne & James A. Bagley & Lauren Narcross & Kaspar Kevvai & Kealan Exley & Meghan Davies & Qingzhao Wang & Malcolm Whiteway & Vincent J. J. Martin, 2023. "Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41064-5
    DOI: 10.1038/s41467-023-41064-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41064-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41064-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Ling & George L. Peabody & Davinia Salvachúa & Young-Mo Kim & Colin M. Kneucker & Christopher H. Calvey & Michela A. Monninger & Nathalie Munoz Munoz & Brenton C. Poirier & Kelsey J. Ramirez & Pe, 2022. "Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Michael E. Pyne & Kaspar Kevvai & Parbir S. Grewal & Lauren Narcross & Brian Choi & Leanne Bourgeois & John E. Dueber & Vincent J. J. Martin, 2020. "A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Jiao & Xiaozhi Fu & Qishuang Li & Junling Bu & Xiuyu Liu & Otto Savolainen & Luqi Huang & Juan Guo & Jens Nielsen & Yun Chen, 2024. "De novo production of protoberberine and benzophenanthridine alkaloids through metabolic engineering of yeast," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Björn D. M. Bean & Colleen J. Mulvihill & Riddhiman K. Garge & Daniel R. Boutz & Olivier Rousseau & Brendan M. Floyd & William Cheney & Elizabeth C. Gardner & Andrew D. Ellington & Edward M. Marcotte , 2022. "Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Quanli Liu & Yi Liu & Gang Li & Otto Savolainen & Yun Chen & Jens Nielsen, 2021. "De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Pavel Dvořák & Barbora Burýšková & Barbora Popelářová & Birgitta E. Ebert & Tibor Botka & Dalimil Bujdoš & Alberto Sánchez-Pascuala & Hannah Schöttler & Heiko Hayen & Víctor Lorenzo & Lars M. Blank & , 2024. "Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Yue Gao & Fei Li & Zhengshan Luo & Zhiwei Deng & Yan Zhang & Zhenbo Yuan & Changmei Liu & Yijian Rao, 2024. "Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Christopher J. Vavricka & Shunsuke Takahashi & Naoki Watanabe & Musashi Takenaka & Mami Matsuda & Takanobu Yoshida & Ryo Suzuki & Hiromasa Kiyota & Jianyong Li & Hiromichi Minami & Jun Ishii & Kenji T, 2022. "Machine learning discovery of missing links that mediate alternative branches to plant alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Yuanwei Gou & Dongfang Li & Minghui Zhao & Mengxin Li & Jiaojiao Zhang & Yilian Zhou & Feng Xiao & Gaofei Liu & Haote Ding & Chenfan Sun & Cuifang Ye & Chang Dong & Jucan Gao & Di Gao & Zehua Bao & Le, 2024. "Intein-mediated temperature control for complete biosynthesis of sanguinarine and its halogenated derivatives in yeast," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Meirong Gao & Yuxin Zhao & Zhanyi Yao & Qianhe Su & Payton Van Beek & Zengyi Shao, 2023. "Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41064-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.