IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28883-8.html
   My bibliography  Save this article

Machine learning discovery of missing links that mediate alternative branches to plant alkaloids

Author

Listed:
  • Christopher J. Vavricka

    (Kobe University)

  • Shunsuke Takahashi

    (Tokyo Denki University, Hatoyama, Hiki-gun)

  • Naoki Watanabe

    (Kobe University)

  • Musashi Takenaka

    (Kobe University)

  • Mami Matsuda

    (Kobe University)

  • Takanobu Yoshida

    (Kobe University)

  • Ryo Suzuki

    (Kobe University)

  • Hiromasa Kiyota

    (Okayama University)

  • Jianyong Li

    (Virginia Polytechnic and State University)

  • Hiromichi Minami

    (Ishikawa Prefectural University)

  • Jun Ishii

    (Kobe University
    Kobe University)

  • Kenji Tsuge

    (Kobe University)

  • Michihiro Araki

    (Kobe University
    Kyoto University
    Health and Nutrition)

  • Akihiko Kondo

    (Kobe University
    Kobe University
    Kobe University)

  • Tomohisa Hasunuma

    (Kobe University
    Kobe University)

Abstract

Engineering the microbial production of secondary metabolites is limited by the known reactions of correctly annotated enzymes. Therefore, the machine learning discovery of specialized enzymes offers great potential to expand the range of biosynthesis pathways. Benzylisoquinoline alkaloid production is a model example of metabolic engineering with potential to revolutionize the paradigm of sustainable biomanufacturing. Existing bacterial studies utilize a norlaudanosoline pathway, whereas plants contain a more stable norcoclaurine pathway, which is exploited in yeast. However, committed aromatic precursors are still produced using microbial enzymes that remain elusive in plants, and additional downstream missing links remain hidden within highly duplicated plant gene families. In the current study, machine learning is applied to predict and select plant missing link enzymes from homologous candidate sequences. Metabolomics-based characterization of the selected sequences reveals potential aromatic acetaldehyde synthases and phenylpyruvate decarboxylases in reconstructed plant gene-only benzylisoquinoline alkaloid pathways from tyrosine. Synergistic application of the aryl acetaldehyde producing enzymes results in enhanced benzylisoquinoline alkaloid production through hybrid norcoclaurine and norlaudanosoline pathways.

Suggested Citation

  • Christopher J. Vavricka & Shunsuke Takahashi & Naoki Watanabe & Musashi Takenaka & Mami Matsuda & Takanobu Yoshida & Ryo Suzuki & Hiromasa Kiyota & Jianyong Li & Hiromichi Minami & Jun Ishii & Kenji T, 2022. "Machine learning discovery of missing links that mediate alternative branches to plant alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28883-8
    DOI: 10.1038/s41467-022-28883-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28883-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28883-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Prashanth Srinivasan & Christina D. Smolke, 2020. "Biosynthesis of medicinal tropane alkaloids in yeast," Nature, Nature, vol. 585(7826), pages 614-619, September.
    2. Akira Nakagawa & Hiromichi Minami & Ju-Sung Kim & Takashi Koyanagi & Takane Katayama & Fumihiko Sato & Hidehiko Kumagai, 2011. "A bacterial platform for fermentative production of plant alkaloids," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    3. Ryan S. Nett & Warren Lau & Elizabeth S. Sattely, 2020. "Discovery and engineering of colchicine alkaloid biosynthesis," Nature, Nature, vol. 584(7819), pages 148-153, August.
    4. Michael E. Pyne & Kaspar Kevvai & Parbir S. Grewal & Lauren Narcross & Brian Choi & Leanne Bourgeois & John E. Dueber & Vincent J. J. Martin, 2020. "A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Xiaozhou Luo & Michael A. Reiter & Leo d’Espaux & Jeff Wong & Charles M. Denby & Anna Lechner & Yunfeng Zhang & Adrian T. Grzybowski & Simon Harth & Weiyin Lin & Hyunsu Lee & Changhua Yu & John Shin &, 2019. "Complete biosynthesis of cannabinoids and their unnatural analogues in yeast," Nature, Nature, vol. 567(7746), pages 123-126, March.
    6. Ryan S. Nett & Warren Lau & Elizabeth S. Sattely, 2020. "Publisher Correction: Discovery and engineering of colchicine alkaloid biosynthesis," Nature, Nature, vol. 584(7821), pages 35-35, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gi Bae Kim & Ji Yeon Kim & Jong An Lee & Charles J. Norsigian & Bernhard O. Palsson & Sang Yup Lee, 2023. "Functional annotation of enzyme-encoding genes using deep learning with transformer layers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Gao & Fei Li & Zhengshan Luo & Zhiwei Deng & Yan Zhang & Zhenbo Yuan & Changmei Liu & Yijian Rao, 2024. "Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Radin Sadre & Thilani M. Anthony & Josh M. Grabar & Matthew A. Bedewitz & A. Daniel Jones & Cornelius S. Barry, 2022. "Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ruiqi Yan & Binghan Xie & Kebo Xie & Qi Liu & Songyang Sui & Shuqi Wang & Dawei Chen & Jimei Liu & Ridao Chen & Jungui Dai & Lin Yang, 2024. "Unravelling and reconstructing the biosynthetic pathway of bergenin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Xiaofei Yang & Shenghan Gao & Li Guo & Bo Wang & Yanyan Jia & Jian Zhou & Yizhuo Che & Peng Jia & Jiadong Lin & Tun Xu & Jianyong Sun & Kai Ye, 2021. "Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Wenna Li & Zhao Zhou & Xianglai Li & Lin Ma & Qingyuan Guan & Guojun Zheng & Hao Liang & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Biosynthesis of plant hemostatic dencichine in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Jack Chun-Ting Liu & Ricardo De La Peña & Christian Tocol & Elizabeth S. Sattely, 2024. "Reconstitution of early paclitaxel biosynthetic network," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Hao-Tian Wang & Zi-Long Wang & Kuan Chen & Ming-Ju Yao & Meng Zhang & Rong-Shen Wang & Jia-He Zhang & Hans Ågren & Fu-Dong Li & Junhao Li & Xue Qiao & Min Ye, 2023. "Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Gita Naseri, 2023. "A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. William M. Shaw & Yunfeng Zhang & Xinyu Lu & Ahmad S. Khalil & Graham Ladds & Xiaozhou Luo & Tom Ellis, 2022. "Screening microbially produced Δ9-tetrahydrocannabinol using a yeast biosensor workflow," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Michael E. Pyne & James A. Bagley & Lauren Narcross & Kaspar Kevvai & Kealan Exley & Meghan Davies & Qingzhao Wang & Malcolm Whiteway & Vincent J. J. Martin, 2023. "Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jiao Yang & Ying Wu & Pan Zhang & Jianxiang Ma & Ying Jun Yao & Yan Lin Ma & Lei Zhang & Yongzhi Yang & Changmin Zhao & Jihua Wu & Xiangwen Fang & Jianquan Liu, 2023. "Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Qun Yue & Jie Meng & Yue Qiu & Miaomiao Yin & Liwen Zhang & Weiping Zhou & Zhiqiang An & Zihe Liu & Qipeng Yuan & Wentao Sun & Chun Li & Huimin Zhao & István Molnár & Yuquan Xu & Shuobo Shi, 2023. "A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. So-Hee Son & Jae-Eung Kim & Gyuri Park & Young-Joon Ko & Bong Hyun Sung & Jongcheol Seo & Seung Soo Oh & Ju Young Lee, 2022. "Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Björn D. M. Bean & Colleen J. Mulvihill & Riddhiman K. Garge & Daniel R. Boutz & Olivier Rousseau & Brendan M. Floyd & William Cheney & Elizabeth C. Gardner & Andrew D. Ellington & Edward M. Marcotte , 2022. "Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Tian Tian & Yong-Jiang Wang & Jian-Ping Huang & Jie Li & Bingyan Xu & Yin Chen & Li Wang & Jing Yang & Yijun Yan & Sheng-Xiong Huang, 2022. "Catalytic innovation underlies independent recruitment of polyketide synthases in cocaine and hyoscyamine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Junlan Zeng & Xiaoqiang Liu & Zhaoyue Dong & Fangyuan Zhang & Fei Qiu & Mingyu Zhong & Tengfei Zhao & Chunxian Yang & Lingjiang Zeng & Xiaozhong Lan & Hongbo Zhang & Junhui Zhou & Min Chen & Kexuan Ta, 2024. "Discovering a mitochondrion-localized BAHD acyltransferase involved in calystegine biosynthesis and engineering the production of 3β-tigloyloxytropane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Quanli Liu & Yi Liu & Gang Li & Otto Savolainen & Yun Chen & Jens Nielsen, 2021. "De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28883-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.