IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28477-4.html
   My bibliography  Save this article

Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb

Author

Listed:
  • Q. Rizzardi

    (University of Illinois at Urbana-Champaign)

  • C. McElfresh

    (University of California, Los Angeles)

  • G. Sparks

    (University of Illinois at Urbana-Champaign)

  • D. D. Stauffer

    (Bruker Nano Surfaces & Metrology, Hysitron Products)

  • J. Marian

    (University of California, Los Angeles)

  • R. Maaß

    (University of Illinois at Urbana-Champaign
    Federal Institute of Materials Research and Testing (BAM))

Abstract

Plastic deformation in crystals is mediated by the motion of line defects known as dislocations. For decades, dislocation activity has been treated as a homogeneous, smooth continuous process. However, it is now recognized that plasticity can be determined by long-range correlated and intermittent collective dislocation processes, known as avalanches. Here we demonstrate in body-centered cubic Nb how the long-range and scale-free dynamics at room temperature are progressively quenched out with decreasing temperature, eventually revealing intermittency with a characteristic length scale that approaches the Burgers vector itself. Plasticity is shown to be bimodal across the studied temperature regime, with conventional thermally-activated smooth plastic flow (‘mild’) coexisting with sporadic bursts (‘wild’) controlled by athermal screw dislocation activity, thereby violating the classical notion of temperature-dependent screw dislocation motion at low temperatures. An abrupt increase of the athermal avalanche component is identified at the critical temperature of the material. Our results indicate that plasticity at any scale can be understood in terms of the coexistence of these mild and wild modes of deformation, which could help design better alloys by suppressing one of the two modes in desired temperature windows.

Suggested Citation

  • Q. Rizzardi & C. McElfresh & G. Sparks & D. D. Stauffer & J. Marian & R. Maaß, 2022. "Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28477-4
    DOI: 10.1038/s41467-022-28477-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28477-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28477-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Wang & P. Y. Yang & W. J. Zhao & S. H. Ma & J. H. Hou & Q. F. He & C. L. Wu & H. A. Chen & Q. Wang & Q. Cheng & B. S. Guo & J. C. Qiao & W. J. Lu & S. J. Zhao & X. D. Xu & C. T. Liu & Y. Liu & C. W, 2024. "Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Cam-Phu Thi Nguyen & Peggy Schoenherr & Ekhard K. H. Salje & Jan Seidel, 2023. "Crackling noise microscopy," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28477-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.