IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40585-3.html
   My bibliography  Save this article

Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset

Author

Listed:
  • Noor Titan Putri Hartono

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Hans Köbler

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Paolo Graniero

    (Helmholtz-Zentrum Berlin für Materialien und Energie
    Freie Universität Berlin)

  • Mark Khenkin

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Rutger Schlatmann

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Carolin Ulbrich

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Antonio Abate

    (Helmholtz-Zentrum Berlin für Materialien und Energie)

Abstract

While perovskite solar cells have reached competitive efficiency values during the last decade, stability issues remain a critical challenge to be addressed for pushing this technology towards commercialisation. In this study, we analyse a large homogeneous dataset of Maximum Power Point Tracking (MPPT) operational ageing data that we collected with a custom-built High-throughput Ageing System in the past 3 years. In total, 2,245 MPPT ageing curves are analysed which were obtained under controlled conditions (continuous illumination, controlled temperature and atmosphere) from devices comprising various lead-halide perovskite absorbers, charge selective layers, contact layers, and architectures. In a high-level statistical analysis, we find a correlation between the maximum reached power conversion efficiency (PCE) and the relative PCE loss observed after 150-hours of ageing, with more efficient cells statistically also showing higher stability. Additionally, using the unsupervised machine learning method self-organising map, we cluster this dataset based on the degradation curve shapes. We find a correlation between the frequency of particular shapes of degradation curves and the maximum reached PCE.

Suggested Citation

  • Noor Titan Putri Hartono & Hans Köbler & Paolo Graniero & Mark Khenkin & Rutger Schlatmann & Carolin Ulbrich & Antonio Abate, 2023. "Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40585-3
    DOI: 10.1038/s41467-023-40585-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40585-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40585-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuze Lin & Bo Chen & Yanjun Fang & Jingjing Zhao & Chunxiong Bao & Zhenhua Yu & Yehao Deng & Peter N. Rudd & Yanfa Yan & Yongbo Yuan & Jinsong Huang, 2018. "Excess charge-carrier induced instability of hybrid perovskites," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Konrad Domanski & Essa A. Alharbi & Anders Hagfeldt & Michael Grätzel & Wolfgang Tress, 2018. "Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells," Nature Energy, Nature, vol. 3(1), pages 61-67, January.
    3. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. T. Jesper Jacobsson & Adam Hultqvist & Alberto García-Fernández & Aman Anand & Amran Al-Ashouri & Anders Hagfeldt & Andrea Crovetto & Antonio Abate & Antonio Gaetano Ricciardulli & Anuja Vijayan & Ash, 2022. "An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles," Nature Energy, Nature, vol. 7(1), pages 107-115, January.
    5. Mark V. Khenkin & Eugene A. Katz & Antonio Abate & Giorgio Bardizza & Joseph J. Berry & Christoph Brabec & Francesca Brunetti & Vladimir Bulović & Quinn Burlingame & Aldo Di Carlo & Rongrong Cheacharo, 2020. "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures," Nature Energy, Nature, vol. 5(1), pages 35-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Saliba & Eva Unger & Lioz Etgar & Jingshan Luo & T. Jesper Jacobsson, 2023. "A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Bhati, Naveen & Nazeeruddin, Mohammad Khaja & Maréchal, François, 2024. "Environmental impacts as the key objectives for perovskite solar cells optimization," Energy, Elsevier, vol. 299(C).
    3. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    5. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    7. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Issa M.Aziz, 2023. "A review of thin film solar cell," Technium, Technium Science, vol. 10(1), pages 6-13.
    9. Luigi Vesce & Maurizio Stefanelli & Aldo Di Carlo, 2021. "Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer," Energies, MDPI, vol. 14(19), pages 1-8, September.
    10. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    13. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Benjamin M. Gallant & Philippe Holzhey & Joel A. Smith & Saqlain Choudhary & Karim A. Elmestekawy & Pietro Caprioglio & Igal Levine & Alexandra A. Sheader & Esther Y-H. Hung & Fengning Yang & Daniel T, 2024. "A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
    19. Sara Pescetelli & Antonio Agresti & George Viskadouros & Stefano Razza & Konstantinos Rogdakis & Ioannis Kalogerakis & Emmanuel Spiliarotis & Enrico Leonardi & Paolo Mariani & Luca Sorbello & Marco Pi, 2022. "Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm," Nature Energy, Nature, vol. 7(7), pages 597-607, July.
    20. Zi Shuai Wang & Yidan An & Xingang Ren & Hong Zhang & Zhanfeng Huang & Hin-Lap Yip & Zhixiang Huang & Wallace C. H. Choy, 2024. "Device deficiency and degradation diagnosis model of Perovskite solar cells through hysteresis analysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40585-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.