IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40572-8.html
   My bibliography  Save this article

Bone marrow adiposity modulation after long duration spaceflight in astronauts

Author

Listed:
  • Tammy Liu

    (Ottawa Hospital Research Institute)

  • Gerd Melkus

    (University of Ottawa)

  • Tim Ramsay

    (University of Ottawa)

  • Adnan Sheikh

    (University of Ottawa)

  • Odette Laneuville

    (University of Ottawa)

  • Guy Trudel

    (Ottawa Hospital Research Institute
    Division of Physical Medicine and Rehabilitation, The Ottawa Hospital
    University of Ottawa)

Abstract

Space travel requires metabolic adaptations from multiple systems. While vital to bone and blood production, human bone marrow adipose (BMA) tissue modulation in space is unknown. Here we show significant downregulation of the lumbar vertebrae BMA in 14 astronauts, 41 days after landing from six months’ missions on the International Space Station. Spectral analyses indicated depletion of marrow adipose reserves. We then demonstrate enhanced erythropoiesis temporally related to low BMA. Next, we demonstrated systemic and then, local lumbar vertebrae bone anabolism temporally related to low BMA. These support the hypothesis that BMA is a preferential local energy source supplying the hypermetabolic bone marrow postflight, leading to its downregulation. A late postflight upregulation abolished the lower BMA of female astronauts and BMA modulation amplitude was higher in younger astronauts. The study design in the extreme environment of space can limit these conclusions. BMA modulation in astronauts can help explain observations on Earth.

Suggested Citation

  • Tammy Liu & Gerd Melkus & Tim Ramsay & Adnan Sheikh & Odette Laneuville & Guy Trudel, 2023. "Bone marrow adiposity modulation after long duration spaceflight in astronauts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40572-8
    DOI: 10.1038/s41467-023-40572-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40572-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40572-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick van Gastel & Steve Stegen & Guy Eelen & Sandra Schoors & Aurélie Carlier & Veerle W. Daniëls & Ninib Baryawno & Dariusz Przybylski & Maarten Depypere & Pieter-Jan Stiers & Dennis Lambrechts & Rie, 2020. "Lipid availability determines fate of skeletal progenitor cells via SOX9," Nature, Nature, vol. 579(7797), pages 111-117, March.
    2. Erica L. Scheller & Casey R. Doucette & Brian S. Learman & William P. Cawthorn & Shaima Khandaker & Benjamin Schell & Brent Wu & Shi-Ying Ding & Miriam A. Bredella & Pouneh K. Fazeli & Basma Khoury & , 2015. "Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues," Nature Communications, Nature, vol. 6(1), pages 1-15, November.
    3. Bingyang Dai & Jiankun Xu & Xu Li & Le Huang & Chelsea Hopkins & Honglian Wang & Hao Yao & Jie Mi & Lizhen Zheng & Jiali Wang & Wenxue Tong & Dick Ho-kiu Chow & Ye Li & Xuan He & Peijie Hu & Ziyi Chen, 2022. "Macrophages in epididymal adipose tissue secrete osteopontin to regulate bone homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Karla J. Suchacki & Adriana A. S. Tavares & Domenico Mattiucci & Erica L. Scheller & Giorgos Papanastasiou & Calum Gray & Matthew C. Sinton & Lynne E. Ramage & Wendy A. McDougald & Andrea Lovdel & Ric, 2020. "Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tongling Huang & Zhaocheng Lu & Zihui Wang & Lixin Cheng & Lu Gao & Jun Gao & Ning Zhang & Chang-An Geng & Xiaoli Zhao & Huaiyu Wang & Chi-Wai Wong & Kelvin W. K. Yeung & Haobo Pan & William Weijia Lu, 2024. "Targeting adipocyte ESRRA promotes osteogenesis and vascular formation in adipocyte-rich bone marrow," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Caojie Liu & Qiuchan Xiong & Qiwen Li & Weimin Lin & Shuang Jiang & Danting Zhang & Yuan Wang & Xiaobo Duan & Ping Gong & Ning Kang, 2022. "CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zhe Gong & Jinjin Zhu & Junxin Chen & Fan Feng & Haitao Zhang & Zheyuan Zhang & Chenxin Song & Kaiyu Liang & Shuhui Yang & Shunwu Fan & Xiangqian Fang & Shuying Shen, 2023. "CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Aaron Warren & Ryan M. Porter & Olivia Reyes-Castro & Md Mohsin Ali & Adriana Marques-Carvalho & Ha-Neui Kim & Landon B. Gatrell & Ernestina Schipani & Intawat Nookaew & Charles A. O’Brien & Roy Morel, 2023. "The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Yonggang Fan & Weixin Zhang & Xiusheng Huang & Mingzhe Fan & Chenhao Shi & Lantian Zhao & Guofu Pi & Huafeng Zhang & Shuangfei Ni, 2024. "Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. N. Zioni & A. Akhiad Bercovich & N. Chapal-Ilani & Tal Bacharach & N. Rappoport & A. Solomon & R. Avraham & E. Kopitman & Z. Porat & M. Sacma & G. Hartmut & M. Scheller & C. Muller-Tidow & D. Lipka & , 2023. "Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40572-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.