IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40258-1.html
   My bibliography  Save this article

Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation

Author

Listed:
  • Alexandre Fromain

    (Sorbonne University, PSL University)

  • Jose Efrain Perez

    (Sorbonne University, PSL University)

  • Aurore Van de Walle

    (Sorbonne University, PSL University)

  • Yoann Lalatonne

    (Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148
    Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne)

  • Claire Wilhelm

    (Sorbonne University, PSL University)

Abstract

The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles’ magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.

Suggested Citation

  • Alexandre Fromain & Jose Efrain Perez & Aurore Van de Walle & Yoann Lalatonne & Claire Wilhelm, 2023. "Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40258-1
    DOI: 10.1038/s41467-023-40258-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40258-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40258-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinliang Gao & Tao Luo & Jinke Wang, 2021. "Gene interfered-ferroptosis therapy for cancers," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Xin Li & Tuying Yong & Zhaohan Wei & Nana Bie & Xiaoqiong Zhang & Guiting Zhan & Jianye Li & Jiaqi Qin & Jingjing Yu & Bixiang Zhang & Lu Gan & Xiangliang Yang, 2022. "Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Yang Zhang & Xiaoyong Wang & Chengchao Chu & Zijian Zhou & Biaoqi Chen & Xin Pang & Gan Lin & Huirong Lin & Yuxin Guo & En Ren & Peng Lv & Yesi Shi & Qingbing Zheng & Xiaohui Yan & Xiaoyuan Chen & Gan, 2020. "Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Kohki Okabe & Noriko Inada & Chie Gota & Yoshie Harada & Takashi Funatsu & Seiichi Uchiyama, 2012. "Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    5. Tianlu Wang & Halim Ugurlu & Yingbo Yan & Mingtong Li & Meng Li & Anna-Maria Wild & Erdost Yildiz & Martina Schneider & Devin Sheehan & Wenqi Hu & Metin Sitti, 2022. "Adaptive wireless millirobotic locomotion into distal vasculature," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Yuyan Jiang & Xuhui Zhao & Jiaguo Huang & Jingchao Li & Paul Kumar Upputuri & He Sun & Xiao Han & Manojit Pramanik & Yansong Miao & Hongwei Duan & Kanyi Pu & Ruiping Zhang, 2020. "Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ziheng Chen & Yibin Wang & Hui Chen & Junhui Law & Huayan Pu & Shaorong Xie & Feng Duan & Yu Sun & Na Liu & Jiangfan Yu, 2024. "A magnetic multi-layer soft robot for on-demand targeted adhesion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Liang Zhang & An Song & Qi-Chao Yang & Shu-Jin Li & Shuo Wang & Shu-Cheng Wan & Jianwei Sun & Ryan T. K. Kwok & Jacky W. Y. Lam & Hexiang Deng & Ben Zhong Tang & Zhi-Jun Sun, 2023. "Integration of AIEgens into covalent organic frameworks for pyroptosis and ferroptosis primed cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Sishen Yuan & Chao Xu & Beilei Cui & Tinghua Zhang & Baijia Liang & Wu Yuan & Hongliang Ren, 2024. "Motor-free telerobotic endomicroscopy for steerable and programmable imaging in complex curved and localized areas," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Zhaoqing Shi & Miaomiao Luo & Qili Huang & Chendi Ding & Wenyan Wang & Yinglong Wu & Jingjing Luo & Chuchu Lin & Ting Chen & Xiaowei Zeng & Lin Mei & Yanli Zhao & Hongzhong Chen, 2023. "NIR-dye bridged human serum albumin reassemblies for effective photothermal therapy of tumor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yong Liu & Liangchao Yuan & Wenwen Chi & Wang-Kang Han & Jinfang Zhang & Huan Pang & Zhongchang Wang & Zhi-Guo Gu, 2024. "Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40258-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.