IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40169-1.html
   My bibliography  Save this article

Synthesis of propenone-linked covalent organic frameworks via Claisen-Schmidt reaction for photocatalytic removal of uranium

Author

Listed:
  • Cheng-Peng Niu

    (Nanchang University)

  • Cheng-Rong Zhang

    (Nanchang University)

  • Xin Liu

    (Nanchang University)

  • Ru-Ping Liang

    (Nanchang University)

  • Jian-Ding Qiu

    (Nanchang University
    East China University of Technology)

Abstract

The type of reactions and the availability of monomers for the synthesis of sp2-c linked covalent organic frameworks (COFs) are considerably limited by the irreversibility of the C=C bond. Herein, inspired by the Claisen-Schmidt condensation reaction, two propenone-linked (C=C–C=O) COFs (named Py-DAB and PyN-DAB) are developed based on the base-catalyzed nucleophilic addition reaction of ketone-activated α-H with aromatic aldehydes. The introduction of propenone structure endows COFs with high crystallinity, excellent physicochemical stability, and intriguing optoelectronic properties. Benefitting from the rational design on the COFs skeleton, Py-DAB and PyN-DAB are applied to the extraction of radionuclide uranium. In particular, PyN-DAB shows excellent removal rates (>98%) in four uranium mine wastewater samples. We highlight that such a general strategy can provide a valuable avenue toward various functional porous crystalline materials.

Suggested Citation

  • Cheng-Peng Niu & Cheng-Rong Zhang & Xin Liu & Ru-Ping Liang & Jian-Ding Qiu, 2023. "Synthesis of propenone-linked covalent organic frameworks via Claisen-Schmidt reaction for photocatalytic removal of uranium," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40169-1
    DOI: 10.1038/s41467-023-40169-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40169-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40169-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Rong Cui & Cheng-Rong Zhang & Wei Jiang & Fang-Fang Li & Ru-Ping Liang & Juewen Liu & Jian-Ding Qiu, 2020. "Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Ya-Jie Li & Wei-Rong Cui & Qiao-Qiao Jiang & Qiong Wu & Ru-Ping Liang & Qiu-Xia Luo & Jian-Ding Qiu, 2021. "Author Correction: A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    3. Ya-Jie Li & Wei-Rong Cui & Qiao-Qiao Jiang & Qiong Wu & Ru-Ping Liang & Qiu-Xia Luo & Jian-Ding Qiu, 2021. "A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Liu & Liangchao Yuan & Wenwen Chi & Wang-Kang Han & Jinfang Zhang & Huan Pang & Zhongchang Wang & Zhi-Guo Gu, 2024. "Cairo pentagon tessellated covalent organic frameworks with mcm topology for near-infrared phototherapy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Rong Zhang & Wei-Rong Cui & Shun-Mo Yi & Cheng-Peng Niu & Ru-Ping Liang & Jia-Xin Qi & Xiao-Juan Chen & Wei Jiang & Xin Liu & Qiu-Xia Luo & Jian-Ding Qiu, 2022. "An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4− or 99TcO4−," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Gobinda Das & Bikash Garai & Thirumurugan Prakasam & Farah Benyettou & Sabu Varghese & Sudhir Kumar Sharma & Felipe Gándara & Renu Pasricha & Maria Baias & Ramesh Jagannathan & Na’il Saleh & Mourad El, 2022. "Fluorescence turn on amine detection in a cationic covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40169-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.