IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14761.html
   My bibliography  Save this article

Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

Author

Listed:
  • Shawn D. Pollard

    (National University of Singapore)

  • Joseph A. Garlow

    (Stony Brook University
    Brookhaven National Laboratory)

  • Jiawei Yu

    (National University of Singapore)

  • Zhen Wang

    (Brookhaven National Laboratory
    Louisiana State University)

  • Yimei Zhu

    (Stony Brook University
    Brookhaven National Laboratory)

  • Hyunsoo Yang

    (National University of Singapore)

Abstract

Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger region characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.

Suggested Citation

  • Shawn D. Pollard & Joseph A. Garlow & Jiawei Yu & Zhen Wang & Yimei Zhu & Hyunsoo Yang, 2017. "Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14761
    DOI: 10.1038/ncomms14761
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14761
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruyi Chen & Chong Chen & Lei Han & Peisen Liu & Rongxuan Su & Wenxuan Zhu & Yongjian Zhou & Feng Pan & Cheng Song, 2023. "Ordered creation and motion of skyrmions with surface acoustic wave," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.