IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40066-7.html
   My bibliography  Save this article

CellSighter: a neural network to classify cells in highly multiplexed images

Author

Listed:
  • Yael Amitay

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Yuval Bussi

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Ben Feinstein

    (Weizmann Institute of Science)

  • Shai Bagon

    (Weizmann Institute of Science)

  • Idan Milo

    (Weizmann Institute of Science)

  • Leeat Keren

    (Weizmann Institute of Science)

Abstract

Multiplexed imaging enables measurement of multiple proteins in situ, offering an unprecedented opportunity to chart various cell types and states in tissues. However, cell classification, the task of identifying the type of individual cells, remains challenging, labor-intensive, and limiting to throughput. Here, we present CellSighter, a deep-learning based pipeline to accelerate cell classification in multiplexed images. Given a small training set of expert-labeled images, CellSighter outputs the label probabilities for all cells in new images. CellSighter achieves over 80% accuracy for major cell types across imaging platforms, which approaches inter-observer concordance. Ablation studies and simulations show that CellSighter is able to generalize its training data and learn features of protein expression levels, as well as spatial features such as subcellular expression patterns. CellSighter’s design reduces overfitting, and it can be trained with only thousands or even hundreds of labeled examples. CellSighter also outputs a prediction confidence, allowing downstream experts control over the results. Altogether, CellSighter drastically reduces hands-on time for cell classification in multiplexed images, while improving accuracy and consistency across datasets.

Suggested Citation

  • Yael Amitay & Yuval Bussi & Ben Feinstein & Shai Bagon & Idan Milo & Leeat Keren, 2023. "CellSighter: a neural network to classify cells in highly multiplexed images," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40066-7
    DOI: 10.1038/s41467-023-40066-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40066-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40066-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex Baranski & Idan Milo & Shirley Greenbaum & John-Paul Oliveria & Dunja Mrdjen & Michael Angelo & Leeat Keren, 2021. "MAUI (MBI Analysis User Interface)—An image processing pipeline for Multiplexed Mass Based Imaging," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-16, April.
    2. Hartland W. Jackson & Jana R. Fischer & Vito R. T. Zanotelli & H. Raza Ali & Robert Mechera & Savas D. Soysal & Holger Moch & Simone Muenst & Zsuzsanna Varga & Walter P. Weber & Bernd Bodenmiller, 2020. "The single-cell pathology landscape of breast cancer," Nature, Nature, vol. 578(7796), pages 615-620, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Shaban & Yunhao Bai & Huaying Qiu & Shulin Mao & Jason Yeung & Yao Yu Yeo & Vignesh Shanmugam & Han Chen & Bokai Zhu & Jason L. Weirather & Garry P. Nolan & Margaret A. Shipp & Scott J. Rodig, 2024. "MAPS: pathologist-level cell type annotation from tissue images through machine learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunhao Bai & Bokai Zhu & John-Paul Oliveria & Bryan J. Cannon & Dorien Feyaerts & Marc Bosse & Kausalia Vijayaragavan & Noah F. Greenwald & Darci Phillips & Christian M. Schürch & Samuel M. Naik & Edw, 2023. "Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Thomas Hu & Mayar Allam & Shuangyi Cai & Walter Henderson & Brian Yueh & Aybuke Garipcan & Anton V. Ievlev & Maryam Afkarian & Semir Beyaz & Ahmet F. Coskun, 2023. "Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Peng Lu & Karolyn A. Oetjen & Diane E. Bender & Marianna B. Ruzinova & Daniel A. C. Fisher & Kevin G. Shim & Russell K. Pachynski & W. Nathaniel Brennen & Stephen T. Oh & Daniel C. Link & Daniel L. J., 2023. "IMC-Denoise: a content aware denoising pipeline to enhance Imaging Mass Cytometry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Candace C. Liu & Noah F. Greenwald & Alex Kong & Erin F. McCaffrey & Ke Xuan Leow & Dunja Mrdjen & Bryan J. Cannon & Josef Lorenz Rumberger & Sricharan Reddy Varra & Michael Angelo, 2023. "Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Rui Chen & Jiasu Xu & Boqian Wang & Yi Ding & Aynur Abdulla & Yiyang Li & Lai Jiang & Xianting Ding, 2024. "SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Darci Phillips & Magdalena Matusiak & Belén Rivero Gutierrez & Salil S. Bhate & Graham L. Barlow & Sizun Jiang & Janos Demeter & Kimberly S. Smythe & Robert H. Pierce & Steven P. Fling & Nirasha Ramch, 2021. "Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    11. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    12. Michele Bortolomeazzi & Lucia Montorsi & Damjan Temelkovski & Mohamed Reda Keddar & Amelia Acha-Sagredo & Michael J. Pitcher & Gianluca Basso & Luigi Laghi & Manuel Rodriguez-Justo & Jo Spencer & Fran, 2022. "A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Muhammad Shaban & Yunhao Bai & Huaying Qiu & Shulin Mao & Jason Yeung & Yao Yu Yeo & Vignesh Shanmugam & Han Chen & Bokai Zhu & Jason L. Weirather & Garry P. Nolan & Margaret A. Shipp & Scott J. Rodig, 2024. "MAPS: pathologist-level cell type annotation from tissue images through machine learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Michael J. Geuenich & Dae-won Gong & Kieran R. Campbell, 2024. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Vincent Geldhof & Laura P. M. H. Rooij & Liliana Sokol & Jacob Amersfoort & Maxim Schepper & Katerina Rohlenova & Griet Hoste & Adriaan Vanderstichele & Anne-Marie Delsupehe & Edoardo Isnaldi & Naima , 2022. "Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Nastaran Mohammadi Ghahhari & Magdalena K. Sznurkowska & Nicolas Hulo & Lilia Bernasconi & Nicola Aceto & Didier Picard, 2022. "Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Vázquez López, Raul, 2023. "La competitividad de las exportaciones del sector químico mexicano en los Estados Unidos de América y la Unión Europea, 1994-2015," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 42(75), pages 83-109, January.
    19. Anissa El Marrahi & Fabio Lipreri & Ziqi Kang & Louise Gsell & Alper Eroglu & David Alber & Jean Hausser, 2023. "NIPMAP: niche-phenotype mapping of multiplex histology data by community ecology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Junyoung Seo & Yeonbo Sim & Jeewon Kim & Hyunwoo Kim & In Cho & Hoyeon Nam & Young-Gyu Yoon & Jae-Byum Chang, 2022. "PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40066-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.