IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28470-x.html
   My bibliography  Save this article

A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution

Author

Listed:
  • Michele Bortolomeazzi

    (The Francis Crick Institute
    King’s College London)

  • Lucia Montorsi

    (The Francis Crick Institute
    King’s College London)

  • Damjan Temelkovski

    (The Francis Crick Institute
    King’s College London)

  • Mohamed Reda Keddar

    (The Francis Crick Institute
    King’s College London)

  • Amelia Acha-Sagredo

    (The Francis Crick Institute
    King’s College London)

  • Michael J. Pitcher

    (King’s College London)

  • Gianluca Basso

    (IRCCS Humanitas Research Hospital
    IRCCS Humanitas Research Hospital)

  • Luigi Laghi

    (IRCCS Humanitas Research Hospital
    University of Parma)

  • Manuel Rodriguez-Justo

    (University College London Cancer Institute)

  • Jo Spencer

    (King’s College London)

  • Francesca D. Ciccarelli

    (The Francis Crick Institute
    King’s College London)

Abstract

Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at “SIMPLI [ https://github.com/ciccalab/SIMPLI ]”.

Suggested Citation

  • Michele Bortolomeazzi & Lucia Montorsi & Damjan Temelkovski & Mohamed Reda Keddar & Amelia Acha-Sagredo & Michael J. Pitcher & Gianluca Basso & Luigi Laghi & Manuel Rodriguez-Justo & Jo Spencer & Fran, 2022. "A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28470-x
    DOI: 10.1038/s41467-022-28470-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28470-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28470-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Febe Maldegem & Karishma Valand & Megan Cole & Harshil Patel & Mihaela Angelova & Sareena Rana & Emma Colliver & Katey Enfield & Nourdine Bah & Gavin Kelly & Victoria Siu Kwan Tsang & Edurne Mugarza &, 2021. "Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Lei Zhang & Xin Yu & Liangtao Zheng & Yuanyuan Zhang & Yansen Li & Qiao Fang & Ranran Gao & Boxi Kang & Qiming Zhang & Julie Y. Huang & Hiroyasu Konno & Xinyi Guo & Yingjiang Ye & Songyuan Gao & Shan , 2018. "Lineage tracking reveals dynamic relationships of T cells in colorectal cancer," Nature, Nature, vol. 564(7735), pages 268-272, December.
    3. Hartland W. Jackson & Jana R. Fischer & Vito R. T. Zanotelli & H. Raza Ali & Robert Mechera & Savas D. Soysal & Holger Moch & Simone Muenst & Zsuzsanna Varga & Walter P. Weber & Bernd Bodenmiller, 2020. "The single-cell pathology landscape of breast cancer," Nature, Nature, vol. 578(7796), pages 615-620, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Yunhao Bai & Bokai Zhu & John-Paul Oliveria & Bryan J. Cannon & Dorien Feyaerts & Marc Bosse & Kausalia Vijayaragavan & Noah F. Greenwald & Darci Phillips & Christian M. Schürch & Samuel M. Naik & Edw, 2023. "Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Rui Chen & Jiasu Xu & Boqian Wang & Yi Ding & Aynur Abdulla & Yiyang Li & Lai Jiang & Xianting Ding, 2024. "SpiDe-Sr: blind super-resolution network for precise cell segmentation and clustering in spatial proteomics imaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Handong Sun & Lishen Zhang & Zhonglin Wang & Danling Gu & Mengyan Zhu & Yun Cai & Lu Li & Jiaqi Tang & Bin Huang & Bakwatanisa Bosco & Ning Li & Lingxiang Wu & Wei Wu & Liangyu Li & Yuan Liang & Lin L, 2023. "Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Darci Phillips & Magdalena Matusiak & Belén Rivero Gutierrez & Salil S. Bhate & Graham L. Barlow & Sizun Jiang & Janos Demeter & Kimberly S. Smythe & Robert H. Pierce & Steven P. Fling & Nirasha Ramch, 2021. "Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    12. Thomas Hu & Mayar Allam & Shuangyi Cai & Walter Henderson & Brian Yueh & Aybuke Garipcan & Anton V. Ievlev & Maryam Afkarian & Semir Beyaz & Ahmet F. Coskun, 2023. "Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    14. Mei Lin & Xiao-Long Zhang & Rui You & You-Ping Liu & Hong-Min Cai & Li-Zhi Liu & Xue-Fei Liu & Xiong Zou & Yu-Long Xie & Ru-Hai Zou & Yi-Nuan Zhang & Rui Sun & Wei-Yi Feng & Hai-Yan Wang & Gui-Hua Tao, 2023. "Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Yael Amitay & Yuval Bussi & Ben Feinstein & Shai Bagon & Idan Milo & Leeat Keren, 2023. "CellSighter: a neural network to classify cells in highly multiplexed images," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Peng Lu & Karolyn A. Oetjen & Diane E. Bender & Marianna B. Ruzinova & Daniel A. C. Fisher & Kevin G. Shim & Russell K. Pachynski & W. Nathaniel Brennen & Stephen T. Oh & Daniel C. Link & Daniel L. J., 2023. "IMC-Denoise: a content aware denoising pipeline to enhance Imaging Mass Cytometry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Michael J. Geuenich & Dae-won Gong & Kieran R. Campbell, 2024. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Yiming Lu & Aiqing Yang & Cheng Quan & Yingwei Pan & Haoyun Zhang & Yuanfeng Li & Chengming Gao & Hao Lu & Xueting Wang & Pengbo Cao & Hongxia Chen & Shichun Lu & Gangqiao Zhou, 2022. "A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Jingjing Qi & Hongxiang Sun & Yao Zhang & Zhengting Wang & Zhenzhen Xun & Ziyi Li & Xinyu Ding & Rujuan Bao & Liwen Hong & Wenqing Jia & Fei Fang & Hongzhi Liu & Lei Chen & Jie Zhong & Duowu Zou & Lia, 2022. "Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28470-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.