IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39977-2.html
   My bibliography  Save this article

Topological nodal line in superfluid 3He and the Anderson theorem

Author

Listed:
  • T. Kamppinen

    (Aalto University)

  • J. Rysti

    (Aalto University)

  • M.-M. Volard

    (Aalto University)

  • G. E. Volovik

    (Aalto University
    Landau Institute for Theoretical Physics)

  • V. B. Eltsov

    (Aalto University)

Abstract

Superconductivity and superfluidity with anisotropic pairing—such as d-wave in cuprates and p-wave in superfluid 3He—are strongly suppressed by impurities. Meanwhile, for applications, the robustness of Cooper pairs to disorder is highly desired. Recently, it has been suggested that unconventional systems become robust if the impurity scattering mixes quasiparticle states only within individual subsystems obeying the Anderson theorem that protects conventional superconductivity. Here, we experimentally verify this conjecture by measuring the temperature dependence of the energy gap in the polar phase of superfluid 3He. We show that oriented columnar non-magnetic defects do not essentially modify the energy spectrum, which has a Dirac nodal line. Although the scattering is strong, it preserves the momentum along the length of the columns and forms robust subsystems according to the conjecture. This finding may stimulate future experiments on the protection of topological superconductivity against disorder and on the nature of topological fermionic flat bands.

Suggested Citation

  • T. Kamppinen & J. Rysti & M.-M. Volard & G. E. Volovik & V. B. Eltsov, 2023. "Topological nodal line in superfluid 3He and the Anderson theorem," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39977-2
    DOI: 10.1038/s41467-023-39977-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39977-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39977-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    2. P. J. Heikkinen & A. Casey & L. V. Levitin & X. Rojas & A. Vorontsov & P. Sharma & N. Zhelev & J. M. Parpia & J. Saunders, 2021. "Fragility of surface states in topological superfluid 3He," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Chandan Setty & Shinibali Bhattacharyya & Yifu Cao & Andreas Kreisel & P. J. Hirschfeld, 2020. "Topological ultranodal pair states in iron-based superconductors," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Kaijie Yang & Zian Xu & Yanjie Feng & Frank Schindler & Yuanfeng Xu & Zhen Bi & B. Andrei Bernevig & Peizhe Tang & Chao-Xing Liu, 2024. "Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    12. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. C. D. Dashwood & A. H. Walker & M. P. Kwasigroch & L. S. I. Veiga & Q. Faure & J. G. Vale & D. G. Porter & P. Manuel & D. D. Khalyavin & F. Orlandi & C. V. Colin & O. Fabelo & F. Krüger & R. S. Perry , 2023. "Strain control of a bandwidth-driven spin reorientation in Ca3Ru2O7," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    20. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39977-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.