IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39751-4.html
   My bibliography  Save this article

The MOM1 complex recruits the RdDM machinery via MORC6 to establish de novo DNA methylation

Author

Listed:
  • Zheng Li

    (University of California)

  • Ming Wang

    (University of California)

  • Zhenhui Zhong

    (University of California)

  • Javier Gallego-Bartolomé

    (University of California
    CSIC-Universitat Politècnica de València)

  • Suhua Feng

    (University of California
    University of California at Los Angeles)

  • Yasaman Jami-Alahmadi

    (University of California)

  • Xinyi Wang

    (University of California)

  • James Wohlschlegel

    (University of California)

  • Sylvain Bischof

    (University of California
    University of Zurich)

  • Jeff A. Long

    (University of California)

  • Steven E. Jacobsen

    (University of California
    University of California at Los Angeles
    University of California)

Abstract

MORPHEUS’ MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.

Suggested Citation

  • Zheng Li & Ming Wang & Zhenhui Zhong & Javier Gallego-Bartolomé & Suhua Feng & Yasaman Jami-Alahmadi & Xinyi Wang & James Wohlschlegel & Sylvain Bischof & Jeff A. Long & Steven E. Jacobsen, 2023. "The MOM1 complex recruits the RdDM machinery via MORC6 to establish de novo DNA methylation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39751-4
    DOI: 10.1038/s41467-023-39751-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39751-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39751-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Zhe Zhang & Jianlong Yuan & Lingrui Zhang & Chunxiang Chen & Yuhua Wang & Guiping Zhang & Li Peng & Si-Si Xie & Jing Jiang & Jian-Kang Zhu & Jiamu Du & Cheng-Guo Duan, 2020. "Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Zhihuan Gao & Hai-Liang Liu & Lucia Daxinger & Olga Pontes & Xinjian He & Weiqiang Qian & Huixin Lin & Mingtang Xie & Zdravko J. Lorkovic & Shoudong Zhang & Daisuke Miki & Xiangqiang Zhan & Dominique , 2010. "An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation," Nature, Nature, vol. 465(7294), pages 106-109, May.
    3. Qikun Liu & Sylvain Bischof & C. Jake Harris & Zhenhui Zhong & Lingyu Zhan & Calvin Nguyen & Andrew Rashoff & William D. Barshop & Fei Sun & Suhua Feng & Magdalena Potok & Javier Gallego-Bartolome & J, 2020. "The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Paolo Amedeo & Yoshiki Habu & Karin Afsar & Ortrun Mittelsten Scheid & Jerzy Paszkowski, 2000. "Disruption of the plant gene MOM releases transcriptional silencing of methylated genes," Nature, Nature, vol. 405(6783), pages 203-206, May.
    5. Lianna M. Johnson & Jiamu Du & Christopher J. Hale & Sylvain Bischof & Suhua Feng & Ramakrishna K. Chodavarapu & Xuehua Zhong & Giuseppe Marson & Matteo Pellegrini & David J. Segal & Dinshaw J. Patel , 2014. "SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation," Nature, Nature, vol. 507(7490), pages 124-128, March.
    6. Yan Xue & Zhenhui Zhong & C. Jake Harris & Javier Gallego-Bartolomé & Ming Wang & Colette Picard & Xueshi Cao & Shan Hua & Ivy Kwok & Suhua Feng & Yasaman Jami-Alahmadi & Jihui Sha & Jason Gardiner & , 2021. "Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Somsakul Pop Wongpalee & Shiheng Liu & Javier Gallego-Bartolomé & Alexander Leitner & Ruedi Aebersold & Wanlu Liu & Linda Yen & Maria A. Nohales & Peggy Hsuanyu Kuo & Ajay A. Vashisht & James A. Wohls, 2019. "CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linhua Sun & Jingru Zhou & Xiao Xu & Yi Liu & Ni Ma & Yutong Liu & Wenchao Nie & Ling Zou & Xing Wang Deng & Hang He, 2024. "Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Wei Zhang & Kun Huang & Zhan-Xi Gu & Xiao-Xian Wu & Jia-Wei Wang & Yu Zhang, 2023. "A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Linhua Sun & Jingru Zhou & Xiao Xu & Yi Liu & Ni Ma & Yutong Liu & Wenchao Nie & Ling Zou & Xing Wang Deng & Hang He, 2024. "Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yujuan Liu & Jie Shu & Zhi Zhang & Ning Ding & Jinyuan Liu & Jun Liu & Yuhai Cui & Changhu Wang & Chen Chen, 2024. "A conserved Pol II elongator SPT6L mediates Pol V transcription to regulate RNA-directed DNA methylation in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Zhenhui Zhong & Yafei Wang & Ming Wang & Fan Yang & Quentin Angelo Thomas & Yan Xue & Yaxin Zhang & Wanlu Liu & Yasaman Jami-Alahmadi & Linhao Xu & Suhua Feng & Sebastian Marquardt & James A. Wohlschl, 2022. "Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yinwen Zhang & Hosung Jang & Rui Xiao & Ioanna Kakoulidou & Robert S. Piecyk & Frank Johannes & Robert J. Schmitz, 2021. "Heterochromatin is a quantitative trait associated with spontaneous epiallele formation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Zsolt Karányi & Ágnes Mosolygó-L & Orsolya Feró & Adrienn Horváth & Beáta Boros-Oláh & Éva Nagy & Szabolcs Hetey & Imre Holb & Henrik Mihály Szaker & Márton Miskei & Tibor Csorba & Lóránt Székvölgyi, 2022. "NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Yueying Zhang & Qianli Dong & Zhen Wang & Qinzhe Liu & Haopeng Yu & Wenqing Sun & Jitender Cheema & Qiancheng You & Ling Ding & Xiaofeng Cao & Chuan He & Yiliang Ding & Huakun Zhang, 2024. "A fine-scale Arabidopsis chromatin landscape reveals chromatin conformation-associated transcriptional dynamics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39751-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.