IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39657-1.html
   My bibliography  Save this article

Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1

Author

Listed:
  • Meropi Bagka

    (University of Geneva)

  • Hyeonyi Choi

    (University of Geneva)

  • Margaux Héritier

    (University of Geneva
    University of Geneva)

  • Hanna Schwaemmle

    (University of Geneva)

  • Quentin T. L. Pasquer

    (University of Geneva)

  • Simon M. G. Braun

    (University of Geneva)

  • Leonardo Scapozza

    (University of Geneva
    University of Geneva)

  • Yibo Wu

    (University of Geneva)

  • Sascha Hoogendoorn

    (University of Geneva)

Abstract

Target deconvolution of small molecule hits from phenotypic screens presents a major challenge. Many screens have been conducted to find inhibitors for the Hedgehog signaling pathway – a developmental pathway with many implications in health and disease – yielding many hits but only few identified cellular targets. We here present a strategy for target identification based on Proteolysis-Targeting Chimeras (PROTACs), combined with label-free quantitative proteomics. We develop a PROTAC based on Hedgehog Pathway Inhibitor-1 (HPI-1), a phenotypic screen hit with unknown cellular target. Using this Hedgehog Pathway PROTAC (HPP) we identify and validate BET bromodomains as the cellular targets of HPI-1. Furthermore, we find that HPP-9 is a long-acting Hedgehog pathway inhibitor through prolonged BET bromodomain degradation. Collectively, we provide a powerful PROTAC-based approach for target deconvolution, that answers the longstanding question of the cellular target of HPI-1 and yields a PROTAC that acts on the Hedgehog pathway.

Suggested Citation

  • Meropi Bagka & Hyeonyi Choi & Margaux Héritier & Hanna Schwaemmle & Quentin T. L. Pasquer & Simon M. G. Braun & Leonardo Scapozza & Yibo Wu & Sascha Hoogendoorn, 2023. "Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39657-1
    DOI: 10.1038/s41467-023-39657-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39657-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39657-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Cohen & Anna Kicheva & Ana Ribeiro & Robert Blassberg & Karen M. Page & Chris P. Barnes & James Briscoe, 2015. "Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    2. Ari J. Firestone & Joshua S. Weinger & Maria Maldonado & Kari Barlan & Lance D. Langston & Michael O’Donnell & Vladimir I. Gelfand & Tarun M. Kapoor & James K. Chen, 2012. "Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein," Nature, Nature, vol. 484(7392), pages 125-129, April.
    3. Eric S. Fischer & Kerstin Böhm & John R. Lydeard & Haidi Yang & Michael B. Stadler & Simone Cavadini & Jane Nagel & Fabrizio Serluca & Vincent Acker & Gondichatnahalli M. Lingaraju & Ritesh B. Tichkul, 2014. "Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide," Nature, Nature, vol. 512(7512), pages 49-53, August.
    4. Jussi Taipale & James K. Chen & Michael K. Cooper & Baolin Wang & Randall K. Mann & Ljiljana Milenkovic & Matthew P. Scott & Philip A. Beachy, 2000. "Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine," Nature, Nature, vol. 406(6799), pages 1005-1009, August.
    5. Georg Petzold & Eric S. Fischer & Nicolas H. Thomä, 2016. "Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase," Nature, Nature, vol. 532(7597), pages 127-130, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Alessandra Ciucci & Ilaria De Stefano & Valerio Gaetano Vellone & Lucia Lisi & Carolina Bottoni & Giovanni Scambia & Gian Franco Zannoni & Daniela Gallo, 2013. "Expression of the Glioma-Associated Oncogene Homolog 1 (Gli1) in Advanced Serous Ovarian Cancer Is Associated with Unfavorable Overall Survival," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    4. Sarath Ramachandran & Nikolai Makukhin & Kevin Haubrich & Manjula Nagala & Beth Forrester & Dylan M. Lynch & Ryan Casement & Andrea Testa & Elvira Bruno & Rosaria Gitto & Alessio Ciulli, 2023. "Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Dongwen Lv & Pratik Pal & Xingui Liu & Yannan Jia & Dinesh Thummuri & Peiyi Zhang & Wanyi Hu & Jing Pei & Qi Zhang & Shuo Zhou & Sajid Khan & Xuan Zhang & Nan Hua & Qingping Yang & Sebastian Arango & , 2021. "Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Zemin Zhang & Yuanqing Li & Jie Yang & Jiacheng Li & Xiongqiang Lin & Ting Liu & Shiling Yang & Jin Lin & Shengyu Xue & Jiamin Yu & Cailing Tang & Ziteng Li & Liping Liu & Zhengzheng Ye & Yanan Deng &, 2024. "Dual-site molecular glues for enhancing protein-protein interactions of the CDK12-DDB1 complex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Seref Gul & Yasemin Kubra Akyel & Zeynep Melis Gul & Safak Isin & Onur Ozcan & Tuba Korkmaz & Saba Selvi & Ibrahim Danis & Ozgecan Savlug Ipek & Fatih Aygenli & Ali Cihan Taskin & Büşra Aytül Akarlar , 2022. "Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Roman Vetter & Dagmar Iber, 2022. "Precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Marcin Zagorski & Nathalie Brandenberg & Matthias Lutolf & Gasper Tkacik & Tobias Bollenbach & James Briscoe & Anna Kicheva, 2024. "Assessing the precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    11. Olena S. Tokareva & Kunhua Li & Tara L. Travaline & Ty M. Thomson & Jean-Marie Swiecicki & Mahmoud Moussa & Jessica D. Ramirez & Sean Litchman & Gregory L. Verdine & John H. McGee, 2023. "Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Yuen Lam Dora Ng & Evelyn Ramberger & Stephan R. Bohl & Anna Dolnik & Christian Steinebach & Theresia Conrad & Sina Müller & Oliver Popp & Miriam Kull & Mohamed Haji & Michael Gütschow & Hartmut Döhne, 2022. "Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Roman Vetter & Dagmar Iber, 2024. "Reply to: Assessing the precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    15. Wenlong Hou & Hao Lin & Yanru Wu & Chuang Li & Jiajun Chen & Xiao-Yu Liu & Yong Qin, 2024. "Divergent and gram-scale syntheses of (–)-veratramine and (–)-cyclopamine," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    16. Jean M. Etersque & Iris K. Lee & Nitika Sharma & Kexiang Xu & Andrew Ruff & Justin D. Northrup & Swarbhanu Sarkar & Tommy Nguyen & Richard Lauman & George M. Burslem & Mark A. Sellmyer, 2023. "Regulation of eDHFR-tagged proteins with trimethoprim PROTACs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39657-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.