IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39496-0.html
   My bibliography  Save this article

A medullary hub for controlling REM sleep and pontine waves

Author

Listed:
  • Amanda L. Schott

    (University of Pennsylvania)

  • Justin Baik

    (University of Pennsylvania)

  • Shinjae Chung

    (University of Pennsylvania)

  • Franz Weber

    (University of Pennsylvania)

Abstract

Rapid-eye-movement (REM) sleep is a distinct behavioral state associated with vivid dreaming and memory processing. Phasic bursts of electrical activity, measurable as spike-like pontine (P)-waves, are a hallmark of REM sleep implicated in memory consolidation. However, the brainstem circuits regulating P-waves, and their interactions with circuits generating REM sleep, remain largely unknown. Here, we show that an excitatory population of dorsomedial medulla (dmM) neurons expressing corticotropin-releasing-hormone (CRH) regulates both REM sleep and P-waves in mice. Calcium imaging showed that dmM CRH neurons are selectively activated during REM sleep and recruited during P-waves, and opto- and chemogenetic experiments revealed that this population promotes REM sleep. Chemogenetic manipulation also induced prolonged changes in P-wave frequency, while brief optogenetic activation reliably triggered P-waves along with transiently accelerated theta oscillations in the electroencephalogram (EEG). Together, these findings anatomically and functionally delineate a common medullary hub for the regulation of both REM sleep and P-waves.

Suggested Citation

  • Amanda L. Schott & Justin Baik & Shinjae Chung & Franz Weber, 2023. "A medullary hub for controlling REM sleep and pontine waves," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39496-0
    DOI: 10.1038/s41467-023-39496-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39496-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39496-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sung-Ho Park & Justin Baik & Jiso Hong & Hanna Antila & Benjamin Kurland & Shinjae Chung & Franz Weber, 2021. "A probabilistic model for the ultradian timing of REM sleep in mice," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-30, August.
    2. Juan F. Ramirez-Villegas & Michel Besserve & Yusuke Murayama & Henry C. Evrard & Axel Oeltermann & Nikos K. Logothetis, 2021. "Coupling of hippocampal theta and ripples with pontogeniculooccipital waves," Nature, Nature, vol. 589(7840), pages 96-102, January.
    3. Lihui Lu & Yuqi Ren & Tao Yu & Zhixiang Liu & Sice Wang & Lubin Tan & Jiawei Zeng & Qiru Feng & Rui Lin & Yang Liu & Qingchun Guo & Minmin Luo, 2020. "Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    4. C. Gutierrez Herrera & F. Girard & A. Bilella & T. C. Gent & D. M. Roccaro-Waldmeyer & A. Adamantidis & M. R. Celio, 2019. "Neurons in the Nucleus papilio contribute to the control of eye movements during REM sleep," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyue Wang & Xiang Fei & Xiaotong Liu & Yanjie Wang & Yue Hu & Wanling Peng & Ying-wei Wang & Siyu Zhang & Min Xu, 2022. "REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Stefano Nardone & Roberto Luca & Antonino Zito & Nataliya Klymko & Dimitris Nicoloutsopoulos & Oren Amsalem & Cory Brannigan & Jon M. Resch & Christopher L. Jacobs & Deepti Pant & Molly Veregge & Hari, 2024. "A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Bálint Király & Andor Domonkos & Márta Jelitai & Vítor Lopes-dos-Santos & Sergio Martínez-Bellver & Barnabás Kocsis & Dániel Schlingloff & Abhilasha Joshi & Minas Salib & Richárd Fiáth & Péter Barthó , 2023. "The medial septum controls hippocampal supra-theta oscillations," Nature Communications, Nature, vol. 14(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39496-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.