IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39036-w.html
   My bibliography  Save this article

Role of the Maritime Continent in the remote influence of Atlantic Niño on the Pacific

Author

Listed:
  • Siying Liu

    (Ocean University of China
    Ocean University of China)

  • Ping Chang

    (Texas A&M University)

  • Xiuquan Wan

    (Ocean University of China
    Ocean University of China)

  • Stephen G. Yeager

    (National Center for Atmospheric Research, Boulder)

  • Ingo Richter

    (Application Laboratory (APL), Research Institute for Value‐Added‐Information Generation (VAiG), Japan Agency for Marine‐Earth Science and Technology (JAMSTEC))

Abstract

Atlantic Niño, the dominant climate mode in the equatorial Atlantic, is known to remotely force a La Niña-like response in the Pacific, potentially affecting seasonal climate predictions. Here, we use both observations and large-ensemble simulations to explore the physical mechanisms linking the Atlantic to the Pacific. Results indicate that an eastward propagating atmospheric Kelvin wave from the Atlantic, through the Indian Ocean, to the Pacific is the primary pathway. Interaction of this Kelvin wave with the orography of the Maritime Continent induces orographic moisture convergence, contributing to the generation of a local Walker Cell over the Maritime Continent-Western Pacific area. Moreover, land friction over the Maritime Continent dissipates Kelvin wave energy, affecting the strength of the Bjerknes feedback and thus the development of the La Niña-like response. Therefore, improving the representation of land–atmosphere–ocean interactions over the Maritime Continent may be fundamental to realistically simulate Atlantic Niño’s impact on El Niño-Southern Oscillation.

Suggested Citation

  • Siying Liu & Ping Chang & Xiuquan Wan & Stephen G. Yeager & Ingo Richter, 2023. "Role of the Maritime Continent in the remote influence of Atlantic Niño on the Pacific," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39036-w
    DOI: 10.1038/s41467-023-39036-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39036-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39036-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenjun Zhang & Feng Jiang & Malte F. Stuecker & Fei-Fei Jin & Axel Timmermann, 2021. "Spurious North Tropical Atlantic precursors to El Niño," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yumin Liu & Kate Duffy & Jennifer G. Dy & Auroop R. Ganguly, 2023. "Explainable deep learning for insights in El Niño and river flows," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Hyun-Su Jo & Yoo-Geun Ham, 2023. "Enhanced joint impact of western hemispheric precursors increases extreme El Niño frequency under greenhouse warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39036-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.