IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38923-6.html
   My bibliography  Save this article

Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes

Author

Listed:
  • Ryan P. Hildebrandt

    (Genetics Institute, University of Florida)

  • Kathryn R. Moss

    (Emory University School of Medicine)

  • Aleksandra Janusz-Kaminska

    (Emory University School of Medicine)

  • Luke A. Knudson

    (Emory University School of Medicine)

  • Lance T. Denes

    (Genetics Institute, University of Florida)

  • Tanvi Saxena

    (Genetics Institute, University of Florida)

  • Devi Prasad Boggupalli

    (Genetics Institute, University of Florida)

  • Zhuangyue Li

    (Genetics Institute, University of Florida)

  • Kun Lin

    (Emory University School of Medicine)

  • Gary J. Bassell

    (Emory University School of Medicine)

  • Eric T. Wang

    (Genetics Institute, University of Florida
    University of Florida)

Abstract

RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.

Suggested Citation

  • Ryan P. Hildebrandt & Kathryn R. Moss & Aleksandra Janusz-Kaminska & Luke A. Knudson & Lance T. Denes & Tanvi Saxena & Devi Prasad Boggupalli & Zhuangyue Li & Kun Lin & Gary J. Bassell & Eric T. Wang, 2023. "Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38923-6
    DOI: 10.1038/s41467-023-38923-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38923-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38923-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mitsutoshi Setou & Dae-Hyung Seog & Yosuke Tanaka & Yoshimitsu Kanai & Yosuke Takei & Masahiko Kawagishi & Nobutaka Hirokawa, 2002. "Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites," Nature, Nature, vol. 417(6884), pages 83-87, May.
    2. Emily A. Scarborough & Keita Uchida & Maria Vogel & Noa Erlitzki & Meghana Iyer & Sai Aung Phyo & Alexey Bogush & Izhak Kehat & Benjamin L. Prosser, 2021. "Microtubules orchestrate local translation to enable cardiac growth," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    4. Stacey D Wagner & Adam J Struck & Riti Gupta & Dylan R Farnsworth & Amy E Mahady & Katy Eichinger & Charles A Thornton & Eric T Wang & J Andrew Berglund, 2016. "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy," PLOS Genetics, Public Library of Science, vol. 12(9), pages 1-24, September.
    5. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Nida Siddiqui & Alexander James Zwetsloot & Alice Bachmann & Daniel Roth & Hamdi Hussain & Jonathan Brandt & Irina Kaverina & Anne Straube, 2019. "PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    7. Fernande Freyermuth & Frédérique Rau & Yosuke Kokunai & Thomas Linke & Chantal Sellier & Masayuki Nakamori & Yoshihiro Kino & Ludovic Arandel & Arnaud Jollet & Christelle Thibault & Muriel Philipps & , 2016. "Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy," Nature Communications, Nature, vol. 7(1), pages 1-14, April.
    8. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    9. Lance T. Denes & Chase P. Kelley & Eric T. Wang, 2021. "Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolhossein Zare & Saeede Salehi & Jakob Bader & Cornelius Schneider & Utz Fischer & Alexander Veh & Panagiota Arampatzi & Matthias Mann & Michael Briese & Michael Sendtner, 2024. "hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    5. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38923-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.