IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38880-0.html
   My bibliography  Save this article

Cell type-specific mapping of ion distribution in Arabidopsis thaliana roots

Author

Listed:
  • Ricardo F. H. Giehl

    (Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben)

  • Paulina Flis

    (University of Nottingham)

  • Jörg Fuchs

    (Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben)

  • Yiqun Gao

    (University of Nottingham)

  • David E. Salt

    (University of Nottingham)

  • Nicolaus Wirén

    (Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben)

Abstract

Cell type-specific mapping of element distribution is critical to fully understand how roots partition nutrients and toxic elements with aboveground parts. In this study, we developed a method that combines fluorescence-activated cell sorting (FACS) with inductively coupled plasma mass spectrometry (ICP-MS) to assess the ionome of different cell populations within Arabidopsis thaliana roots. The method reveals that most elements exhibit a radial concentration gradient increasing from the rhizodermis to inner cell layers, and detected previously unknown ionomic changes resulting from perturbed xylem loading processes. With this approach, we also identify a strong accumulation of manganese in trichoblasts of iron-deficient roots. We demonstrate that confining manganese sequestration in trichoblasts but not in endodermal cells efficiently retains manganese in roots, therefore preventing toxicity in shoots. These results indicate the existence of cell type-specific constraints for efficient metal sequestration in roots. Thus, our approach opens an avenue to investigate element compartmentation and transport pathways in plants.

Suggested Citation

  • Ricardo F. H. Giehl & Paulina Flis & Jörg Fuchs & Yiqun Gao & David E. Salt & Nicolaus Wirén, 2023. "Cell type-specific mapping of ion distribution in Arabidopsis thaliana roots," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38880-0
    DOI: 10.1038/s41467-023-38880-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38880-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38880-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tonni Grube Andersen & Sadaf Naseer & Robertas Ursache & Brecht Wybouw & Wouter Smet & Bert De Rybel & Joop E. M. Vermeer & Niko Geldner, 2018. "Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells," Nature, Nature, vol. 555(7697), pages 529-533, March.
    2. Tonni Grube Andersen & Sadaf Naseer & Robertas Ursache & Brecht Wybouw & Wouter Smet & Bert Rybel & Joop E. M. Vermeer & Niko Geldner, 2018. "Author Correction: Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells," Nature, Nature, vol. 559(7714), pages 9-9, July.
    3. Marc Hanikenne & Ina N. Talke & Michael J. Haydon & Christa Lanz & Andrea Nolte & Patrick Motte & Juergen Kroymann & Detlef Weigel & Ute Krämer, 2008. "Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4," Nature, Nature, vol. 453(7193), pages 391-395, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelina Schindele & Fabienne Gehrke & Carla Schmidt & Sarah Röhrig & Annika Dorn & Holger Puchta, 2022. "Using CRISPR-Kill for organ specific cell elimination by cleavage of tandem repeats," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Damien De Bellis & Lothar Kalmbach & Peter Marhavy & Jean Daraspe & Niko Geldner & Marie Barberon, 2022. "Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Otto, Moritz & Wiehe, Thomas, 2023. "The structured coalescent in the context of gene copy number variation," Theoretical Population Biology, Elsevier, vol. 154(C), pages 67-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38880-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.