IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38671-7.html
   My bibliography  Save this article

Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations

Author

Listed:
  • Bin A. Wang

    (Ruhr-University Bochum
    Ruhr-University Bochum)

  • Maike Veismann

    (Ruhr-University Bochum
    Ruhr-University Bochum)

  • Abhishek Banerjee

    (Newcastle University)

  • Burkhard Pleger

    (Ruhr-University Bochum
    Ruhr-University Bochum)

Abstract

The ability to respond flexibly to an ever-changing environment relies on the orbitofrontal cortex (OFC). However, how the OFC associates sensory information with predicted outcomes to enable flexible sensory learning in humans remains elusive. Here, we combine a probabilistic tactile reversal learning task with functional magnetic resonance imaging (fMRI) to investigate how lateral OFC (lOFC) interacts with the primary somatosensory cortex (S1) to guide flexible tactile learning in humans. fMRI results reveal that lOFC and S1 exhibit distinct task-dependent engagement: while the lOFC responds transiently to unexpected outcomes immediately following reversals, S1 is persistently engaged during re-learning. Unlike the contralateral stimulus-selective S1, activity in ipsilateral S1 mirrors the outcomes of behavior during re-learning, closely related to top-down signals from lOFC. These findings suggest that lOFC contributes to teaching signals to dynamically update representations in sensory areas, which implement computations critical for adaptive behavior.

Suggested Citation

  • Bin A. Wang & Maike Veismann & Abhishek Banerjee & Burkhard Pleger, 2023. "Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38671-7
    DOI: 10.1038/s41467-023-38671-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38671-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38671-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dechen Liu & Juan Deng & Zhewei Zhang & Zhi-Yu Zhang & Yan-Gang Sun & Tianming Yang & Haishan Yao, 2020. "Orbitofrontal control of visual cortex gain promotes visual associative learning," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Abhishek Banerjee & Giuseppe Parente & Jasper Teutsch & Christopher Lewis & Fabian F. Voigt & Fritjof Helmchen, 2020. "Value-guided remapping of sensory cortex by lateral orbitofrontal cortex," Nature, Nature, vol. 585(7824), pages 245-250, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Tao Xie & Markus Adamek & Hohyun Cho & Matthew A. Adamo & Anthony L. Ritaccio & Jon T. Willie & Peter Brunner & Jan Kubanek, 2024. "Graded decisions in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    5. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Rebecca J. Rabinovich & Daniel D. Kato & Randy M. Bruno, 2022. "Learning enhances encoding of time and temporal surprise in mouse primary sensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Masashi Hasegawa & Ziyan Huang & Ricardo Paricio-Montesinos & Jan GrĂ¼ndemann, 2024. "Network state changes in sensory thalamus represent learned outcomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Nicholas Cole & Matthew Harvey & Dylan Myers-Joseph & Aditya Gilra & Adil G. Khan, 2024. "Prediction-error signals in anterior cingulate cortex drive task-switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Yanmei Liu & Jiahe Zhang & Zhishan Jiang & Meiling Qin & Min Xu & Siyu Zhang & Guofen Ma, 2024. "Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Jonathan Schaffner & Sherry Dongqi Bao & Philippe N. Tobler & Todd A. Hare & Rafael Polania, 2023. "Sensory perception relies on fitness-maximizing codes," Nature Human Behaviour, Nature, vol. 7(7), pages 1135-1151, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38671-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.