IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16609-7.html
   My bibliography  Save this article

Orbitofrontal control of visual cortex gain promotes visual associative learning

Author

Listed:
  • Dechen Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Juan Deng

    (Chinese Academy of Sciences)

  • Zhewei Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Zhi-Yu Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yan-Gang Sun

    (Chinese Academy of Sciences
    Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology)

  • Tianming Yang

    (Chinese Academy of Sciences
    Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology)

  • Haishan Yao

    (Chinese Academy of Sciences
    Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology)

Abstract

The orbitofrontal cortex (OFC) encodes expected outcomes and plays a critical role in flexible, outcome-guided behavior. The OFC projects to primary visual cortex (V1), yet the function of this top-down projection is unclear. We find that optogenetic activation of OFC projection to V1 reduces the amplitude of V1 visual responses via the recruitment of local somatostatin-expressing (SST) interneurons. Using mice performing a Go/No-Go visual task, we show that the OFC projection to V1 mediates the outcome-expectancy modulation of V1 responses to the reward-irrelevant No-Go stimulus. Furthermore, V1-projecting OFC neurons reduce firing during expectation of reward. In addition, chronic optogenetic inactivation of OFC projection to V1 impairs, whereas chronic activation of SST interneurons in V1 improves the learning of Go/No-Go visual task, without affecting the immediate performance. Thus, OFC top-down projection to V1 is crucial to drive visual associative learning by modulating the response gain of V1 neurons to non-relevant stimulus.

Suggested Citation

  • Dechen Liu & Juan Deng & Zhewei Zhang & Zhi-Yu Zhang & Yan-Gang Sun & Tianming Yang & Haishan Yao, 2020. "Orbitofrontal control of visual cortex gain promotes visual associative learning," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16609-7
    DOI: 10.1038/s41467-020-16609-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16609-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16609-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin A. Wang & Maike Veismann & Abhishek Banerjee & Burkhard Pleger, 2023. "Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16609-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.