IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38618-y.html
   My bibliography  Save this article

Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice

Author

Listed:
  • Jose M. Ramos-Pittol

    (University of Innsbruck)

  • Isabel Fernandes-Freitas

    (Imperial College London)

  • Alexandra Milona

    (Imperial College London)

  • Stephen M. Manchishi

    (Cambridge University)

  • Kara Rainbow

    (Cambridge University)

  • Brian Y. H. Lam

    (Cambridge University)

  • John A. Tadross

    (Cambridge University
    Cambridge University Hospitals NHS Foundation Trust)

  • Anthony Beucher

    (Imperial College London)

  • William H. Colledge

    (Cambridge University)

  • Inês Cebola

    (Imperial College London)

  • Kevin G. Murphy

    (Imperial College London)

  • Irene Miguel-Aliaga

    (Imperial College London
    MRC London Institute of Medical Sciences)

  • Giles S. H. Yeo

    (Cambridge University)

  • Waljit S. Dhillo

    (Imperial College London)

  • Bryn M. Owen

    (Imperial College London)

Abstract

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.

Suggested Citation

  • Jose M. Ramos-Pittol & Isabel Fernandes-Freitas & Alexandra Milona & Stephen M. Manchishi & Kara Rainbow & Brian Y. H. Lam & John A. Tadross & Anthony Beucher & William H. Colledge & Inês Cebola & Kev, 2023. "Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38618-y
    DOI: 10.1038/s41467-023-38618-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38618-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38618-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melissa J. Fullwood & Mei Hui Liu & You Fu Pan & Jun Liu & Han Xu & Yusoff Bin Mohamed & Yuriy L. Orlov & Stoyan Velkov & Andrea Ho & Poh Huay Mei & Elaine G. Y. Chew & Phillips Yao Hui Huang & Willem, 2009. "An oestrogen-receptor-α-bound human chromatin interactome," Nature, Nature, vol. 462(7269), pages 58-64, November.
    2. H. James McQuillan & Jenny Clarkson & Alexia Kauff & Su Young Han & Siew Hoong Yip & Isaiah Cheong & Robert Porteous & Alison K. Heather & Allan E. Herbison, 2022. "Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoxi Chai & Harianto Tjong & Peng Li & Wei Liao & Ping Wang & Chee Hong Wong & Chew Yee Ngan & Warren J. Leonard & Chia-Lin Wei & Yijun Ruan, 2023. "ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Laureano Tomás-Daza & Llorenç Rovirosa & Paula López-Martí & Andrea Nieto-Aliseda & François Serra & Ainoa Planas-Riverola & Oscar Molina & Rebecca McDonald & Cedric Ghevaert & Esther Cuatrecasas & Do, 2023. "Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Patricia A. Clow & Menghan Du & Nathaniel Jillette & Aziz Taghbalout & Jacqueline J. Zhu & Albert W. Cheng, 2022. "CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Beatriz del Blanco & Sergio Niñerola & Ana M. Martín-González & Juan Paraíso-Luna & Minji Kim & Rafael Muñoz-Viana & Carina Racovac & Jose V. Sanchez-Mut & Yijun Ruan & Ángel Barco, 2024. "Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38618-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.