IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38616-0.html
   My bibliography  Save this article

Neutrophil-derived catecholamines mediate negative stress effects on bone

Author

Listed:
  • Miriam E. A. Tschaffon-Müller

    (Ulm University Medical Center)

  • Elena Kempter

    (Ulm University Medical Center)

  • Lena Steppe

    (Ulm University Medical Center)

  • Sandra Kupfer

    (Ulm University Medical Center)

  • Melanie R. Kuhn

    (Ulm University Medical Center)

  • Florian Gebhard

    (Ulm University Medical Center)

  • Carlos Pankratz

    (Ulm University Medical Center)

  • Miriam Kalbitz

    (Ulm University Medical Center
    University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg)

  • Konrad Schütze

    (Ulm University Medical Center)

  • Harald Gündel

    (Ulm University Medical Center)

  • Nele Kaleck

    (Ulm University Medical Center)

  • Gudrun Strauß

    (Ulm University Medical Center)

  • Jean Vacher

    (Institut de Recherches Cliniques de Montréal
    Department of Medicine, Université de Montréal)

  • Hiroshi Ichinose

    (Tokyo Institute of Technology)

  • Katja Weimer

    (Ulm University Medical Center)

  • Anita Ignatius

    (Ulm University Medical Center)

  • Melanie Haffner-Luntzer

    (Ulm University Medical Center)

  • Stefan O. Reber

    (Ulm University Medical Center)

Abstract

Mental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus. Here we show that tyrosine hydroxylase expression in the fracture hematoma of patients correlates positively with acknowledged stress, depression, and pain scores as well as individual ratings of healing-impairment and pain-perception post-fracture. Moreover, mice lacking tyrosine hydroxylase in myeloid cells are protected from chronic psychosocial stress-induced disturbance of bone growth and healing. Chondrocyte-specific β2-adrenoceptor-deficient mice are also protected from stress-induced bone growth retardation. In summary, our preclinical data identify locally secreted catecholamines in concert with β2-adrenoceptor signalling in chondrocytes as mediators of negative stress effects on bone growth and repair. Given our clinical data, these mechanistic insights seem to be of strong translational relevance.

Suggested Citation

  • Miriam E. A. Tschaffon-Müller & Elena Kempter & Lena Steppe & Sandra Kupfer & Melanie R. Kuhn & Florian Gebhard & Carlos Pankratz & Miriam Kalbitz & Konrad Schütze & Harald Gündel & Nele Kaleck & Gudr, 2023. "Neutrophil-derived catecholamines mediate negative stress effects on bone," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38616-0
    DOI: 10.1038/s41467-023-38616-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38616-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38616-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominik Langgartner & Andrea M Füchsl & Lisa M Kaiser & Tatjana Meier & Sandra Foertsch & Christian Buske & Stefan O Reber & Medhanie A Mulaw, 2018. "Biomarkers for classification and class prediction of stress in a murine model of chronic subordination stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-16, September.
    2. Carol Kilkenny & William J Browne & Innes C Cuthill & Michael Emerson & Douglas G Altman, 2010. "Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research," PLOS Biology, Public Library of Science, vol. 8(6), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Airi Jo-Watanabe & Toshiki Inaba & Takahiro Osada & Ryota Hashimoto & Tomohiro Nishizawa & Toshiaki Okuno & Sayoko Ihara & Kazushige Touhara & Nobutaka Hattori & Masatsugu Oh-Hora & Osamu Nureki & Tak, 2024. "Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Dean A Fergusson & Marc T Avey & Carly C Barron & Mathew Bocock & Kristen E Biefer & Sylvain Boet & Stephane L Bourque & Isidora Conic & Kai Chen & Yuan Yi Dong & Grace M Fox & Ronald B George & Neil , 2019. "Reporting preclinical anesthesia study (REPEAT): Evaluating the quality of reporting in the preclinical anesthesiology literature," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.
    3. M Polyakova & M L Schroeter & B M Elzinga & S Holiga & P Schoenknecht & E R de Kloet & M L Molendijk, 2015. "Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-18, November.
    4. Kimberley E Wever & Carlijn R Hooijmans & Niels P Riksen & Thomas B Sterenborg & Emily S Sena & Merel Ritskes-Hoitinga & Michiel C Warlé, 2015. "Determinants of the Efficacy of Cardiac Ischemic Preconditioning: A Systematic Review and Meta-Analysis of Animal Studies," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    5. Bettina Bert & Céline Heinl & Justyna Chmielewska & Franziska Schwarz & Barbara Grune & Andreas Hensel & Matthias Greiner & Gilbert Schönfelder, 2019. "Refining animal research: The Animal Study Registry," PLOS Biology, Public Library of Science, vol. 17(10), pages 1-12, October.
    6. Xiao-meng Xu & Guang-yan Cai & Ru Bu & Wen-juan Wang & Xue-yuan Bai & Xue-feng Sun & Xiang-mei Chen, 2015. "Beneficial Effects of Caloric Restriction on Chronic Kidney Disease in Rodent Models: A Meta-Analysis and Systematic Review," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    7. Zhongwei Xu & Bingze Xu & Susanna L. Lundström & Àlex Moreno-Giró & Danxia Zhao & Myriam Martin & Erik Lönnblom & Qixing Li & Alexander Krämer & Changrong Ge & Lei Cheng & Bibo Liang & Dongmei Tong & , 2023. "A subset of type-II collagen-binding antibodies prevents experimental arthritis by inhibiting FCGR3 signaling in neutrophils," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Nathalie Percie du Sert & Viki Hurst & Amrita Ahluwalia & Sabina Alam & Marc T Avey & Monya Baker & William J Browne & Alejandra Clark & Innes C Cuthill & Ulrich Dirnagl & Michael Emerson & Paul Garne, 2020. "The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research," PLOS Biology, Public Library of Science, vol. 18(7), pages 1-12, July.
    9. Vivian Leung & Frédérik Rousseau-Blass & Guy Beauchamp & Daniel S J Pang, 2018. "ARRIVE has not ARRIVEd: Support for the ARRIVE (Animal Research: Reporting of in vivo Experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesi," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    10. Claudia Kurreck & Esmeralda Castaños-Vélez & Dorette Freyer & Sonja Blumenau & Ingo Przesdzing & Rene Bernard & Ulrich Dirnagl, 2020. "Improving quality of preclinical academic research through auditing: A feasibility study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    11. Simon Bate & Natasha A Karp, 2014. "A Common Control Group - Optimising the Experiment Design to Maximise Sensitivity," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-12, December.
    12. Laura Maxim & Jeroen P van der Sluijs, 2014. "Qualichem In Vivo: A Tool for Assessing the Quality of In Vivo Studies and Its Application for Bisphenol A," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
    13. Beverly S Muhlhausler & Frank H Bloomfield & Matthew W Gillman, 2013. "Whole Animal Experiments Should Be More Like Human Randomized Controlled Trials," PLOS Biology, Public Library of Science, vol. 11(2), pages 1-6, February.
    14. Sarah Driessen & Lambert Bodewein & Dagmar Dechent & David Graefrath & Kristina Schmiedchen & Dominik Stunder & Thomas Kraus & Anne-Kathrin Petri, 2020. "Biological and health-related effects of weak static magnetic fields (≤ 1 mT) in humans and vertebrates: A systematic review," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
    15. Constance Holman & Sophie K Piper & Ulrike Grittner & Andreas Antonios Diamantaras & Jonathan Kimmelman & Bob Siegerink & Ulrich Dirnagl, 2016. "Where Have All the Rodents Gone? The Effects of Attrition in Experimental Research on Cancer and Stroke," PLOS Biology, Public Library of Science, vol. 14(1), pages 1-12, January.
    16. Thirumalai Diraviyam & Bin Zhao & Yuan Wang & Ruediger Schade & Antonysamy Michael & Xiaoying Zhang, 2014. "Effect of Chicken Egg Yolk Antibodies (IgY) against Diarrhea in Domesticated Animals: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-14, May.
    17. Bertha Estrella & Elena N. Naumova & Magda Cepeda & Trudy Voortman & Peter D. Katsikis & Hemmo A. Drexhage, 2019. "Effects of Air Pollution on Lung Innate Lymphoid Cells: Review of In Vitro and In Vivo Experimental Studies," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    18. Emily M Wong & Fern Tablin & Edward S Schelegle, 2020. "Comparison of nonparametric and parametric methods for time-frequency heart rate variability analysis in a rodent model of cardiovascular disease," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-15, November.
    19. Martín Bustelo & Martín A Bruno & César F Loidl & Manuel Rey-Funes & Harry W M Steinbusch & Antonio W D Gavilanes & D L A van den Hove, 2020. "Statistical differences resulting from selection of stable reference genes after hypoxia and hypothermia in the neonatal rat brain," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    20. David Baker & Katie Lidster & Ana Sottomayor & Sandra Amor, 2014. "Two Years Later: Journals Are Not Yet Enforcing the ARRIVE Guidelines on Reporting Standards for Pre-Clinical Animal Studies," PLOS Biology, Public Library of Science, vol. 12(1), pages 1-6, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38616-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.