IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2606.html
   My bibliography  Save this article

Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8

Author

Listed:
  • Byeong-Won Kim

    (School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu)

  • Seung Beom Hong

    (School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu)

  • Jun Hoe Kim

    (School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu)

  • Do Hoon Kwon

    (School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu)

  • Hyun Kyu Song

    (School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu)

Abstract

Infectious bacteria are cleared from mammalian cells by host autophagy in combination with other upstream cellular components, such as the autophagic receptor NDP52 and sugar receptor galectin-8. However, the detailed molecular basis of the interaction between these two receptors remains to be elucidated. Here, we report the biochemical characterization of both NDP52 and galectin-8 as well as the crystal structure of galectin-8 complexed with an NDP52 peptide. The unexpected observation of nicotinamide adenine dinucleotide located at the carbohydrate-binding site expands our knowledge of the sugar-binding specificity of galectin-8. The NDP52–galectin-8 complex structure explains the key determinants for recognition on both receptors and defines a special orientation of N- and C-terminal carbohydrate recognition domains of galectin-8. Dimeric NDP52 forms a ternary complex with two monomeric galectin-8 molecules as well as two LC3C molecules. These results lay the groundwork for understanding how host cells target bacterial pathogens for autophagy.

Suggested Citation

  • Byeong-Won Kim & Seung Beom Hong & Jun Hoe Kim & Do Hoon Kwon & Hyun Kyu Song, 2013. "Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2606
    DOI: 10.1038/ncomms2606
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2606
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ália dos Santos & Daniel E. Rollins & Yukti Hari-Gupta & Hannah McArthur & Mingxue Du & Sabrina Yong Zi Ru & Kseniia Pidlisna & Ane Stranger & Faeeza Lorgat & Danielle Lambert & Ian Brown & Kevin Howl, 2023. "Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Shuzhi Cui & Tian Xia & Jianjin Zhao & Xiaoyu Ren & Tingtao Wu & Mireille Kameni & Xiaoju Guo & Li He & Jingao Guo & Aléria Duperray-Susini & Florence Levillayer & Jean-Marc Collard & Jin Zhong & Life, 2023. "NDP52 mediates an antiviral response to hepatitis B virus infection through Rab9-dependent lysosomal degradation pathway," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.