IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38515-4.html
   My bibliography  Save this article

Molecular patterns identify distinct subclasses of myeloid neoplasia

Author

Listed:
  • Tariq Kewan

    (Taussig Cancer Institute, Cleveland Clinic
    Yale University)

  • Arda Durmaz

    (Taussig Cancer Institute, Cleveland Clinic
    Case Western Reserve University)

  • Waled Bahaj

    (Taussig Cancer Institute, Cleveland Clinic)

  • Carmelo Gurnari

    (Taussig Cancer Institute, Cleveland Clinic
    University of Rome Tor Vergata)

  • Laila Terkawi

    (Taussig Cancer Institute, Cleveland Clinic)

  • Hussein Awada

    (Taussig Cancer Institute, Cleveland Clinic)

  • Olisaemeka D. Ogbue

    (Taussig Cancer Institute, Cleveland Clinic)

  • Ramsha Ahmed

    (Taussig Cancer Institute, Cleveland Clinic)

  • Simona Pagliuca

    (Taussig Cancer Institute, Cleveland Clinic
    CHRU de Nancy)

  • Hassan Awada

    (Roswell Park Comprehensive Cancer Center)

  • Yasuo Kubota

    (Taussig Cancer Institute, Cleveland Clinic)

  • Minako Mori

    (Taussig Cancer Institute, Cleveland Clinic)

  • Ben Ponvilawan

    (Taussig Cancer Institute, Cleveland Clinic)

  • Bayan Al-Share

    (Wayne State University)

  • Bhumika J. Patel

    (Taussig Cancer Institute, Cleveland Clinic)

  • Hetty E. Carraway

    (Taussig Cancer Institute, Cleveland Clinic)

  • Jacob Scott

    (Taussig Cancer Institute, Cleveland Clinic
    Case Western Reserve University)

  • Suresh K. Balasubramanian

    (Wayne State University)

  • Taha Bat

    (University of Texas Southwestern Medical Center)

  • Yazan Madanat

    (University of Texas Southwestern Medical Center)

  • Mikkael A. Sekeres

    (University of Miami)

  • Torsten Haferlach

    (MLL Munich Leukemia Laboratory)

  • Valeria Visconte

    (Taussig Cancer Institute, Cleveland Clinic)

  • Jaroslaw P. Maciejewski

    (Taussig Cancer Institute, Cleveland Clinic)

Abstract

Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource ( https://drmz.shinyapps.io/mds_latent ).

Suggested Citation

  • Tariq Kewan & Arda Durmaz & Waled Bahaj & Carmelo Gurnari & Laila Terkawi & Hussein Awada & Olisaemeka D. Ogbue & Ramsha Ahmed & Simona Pagliuca & Hassan Awada & Yasuo Kubota & Minako Mori & Ben Ponvi, 2023. "Molecular patterns identify distinct subclasses of myeloid neoplasia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38515-4
    DOI: 10.1038/s41467-023-38515-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38515-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38515-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenichi Yoshida & Masashi Sanada & Yuichi Shiraishi & Daniel Nowak & Yasunobu Nagata & Ryo Yamamoto & Yusuke Sato & Aiko Sato-Otsubo & Ayana Kon & Masao Nagasaki & George Chalkidis & Yutaka Suzuki & M, 2011. "Frequent pathway mutations of splicing machinery in myelodysplasia," Nature, Nature, vol. 478(7367), pages 64-69, October.
    2. Jeffrey W. Tyner & Cristina E. Tognon & Daniel Bottomly & Beth Wilmot & Stephen E. Kurtz & Samantha L. Savage & Nicola Long & Anna Reister Schultz & Elie Traer & Melissa Abel & Anupriya Agarwal & Auro, 2018. "Functional genomic landscape of acute myeloid leukaemia," Nature, Nature, vol. 562(7728), pages 526-531, October.
    3. Yasunobu Nagata & Hideki Makishima & Cassandra M. Kerr & Bartlomiej P. Przychodzen & Mai Aly & Abhinav Goyal & Hassan Awada & Mohammad Fahad Asad & Teodora Kuzmanovic & Hiromichi Suzuki & Tetsuichi Yo, 2019. "Invariant patterns of clonal succession determine specific clinical features of myelodysplastic syndromes," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. White, Arthur & Murphy, Thomas Brendan, 2014. "BayesLCA: An R Package for Bayesian Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i13).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    2. Elizabeth Heyes & Anna S. Wilhelmson & Anne Wenzel & Gabriele Manhart & Thomas Eder & Mikkel B. Schuster & Edwin Rzepa & Sachin Pundhir & Teresa D’Altri & Anne-Katrine Frank & Coline Gentil & Jakob Wo, 2023. "TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Rebecca Anderson & Lance D. Miller & Scott Isom & Jeff W. Chou & Kristin M. Pladna & Nathaniel J. Schramm & Leslie R. Ellis & Dianna S. Howard & Rupali R. Bhave & Megan Manuel & Sarah Dralle & Susan L, 2022. "Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    6. Patricia González-Rodríguez & Daniel J. Klionsky & Bertrand Joseph, 2022. "Autophagy regulation by RNA alternative splicing and implications in human diseases," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference Algorithm for the Saturated Diagnostic Classification Model," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 973-995, December.
    8. Hanlin Wang & Guanghao Luo & Xiaobei Hu & Gaoya Xu & Tao Wang & Minmin Liu & Xiaohui Qiu & Jianan Li & Jingfeng Fu & Bo Feng & Yutong Tu & Weijuan Kan & Chang Wang & Ran Xu & Yubo Zhou & Jianmin Yang , 2023. "Targeting C/EBPα overcomes primary resistance and improves the efficacy of FLT3 inhibitors in acute myeloid leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Mariela Cortés-López & Laura Schulz & Mihaela Enculescu & Claudia Paret & Bea Spiekermann & Mathieu Quesnel-Vallières & Manuel Torres-Diz & Sebastian Unic & Anke Busch & Anna Orekhova & Monika Kuban &, 2022. "High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Bofei Wang & Patrick K. Reville & Mhd Yousuf Yassouf & Fatima Z. Jelloul & Christopher Ly & Poonam N. Desai & Zhe Wang & Pamella Borges & Ivo Veletic & Enes Dasdemir & Jared K. Burks & Guilin Tang & S, 2024. "Comprehensive characterization of IFNγ signaling in acute myeloid leukemia reveals prognostic and therapeutic strategies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Weicong Lyu & Jee-Seon Kim & Youmi Suk, 2023. "Estimating Heterogeneous Treatment Effects Within Latent Class Multilevel Models: A Bayesian Approach," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 3-36, February.
    12. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Elizabeth G. Fernandez & Wilson X. Mai & Kai Song & Nicholas A. Bayley & Jiyoon Kim & Henan Zhu & Marissa Pioso & Pauline Young & Cassidy L. Andrasz & Dimitri Cadet & Linda M. Liau & Gang Li & William, 2024. "Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Jorge Mata-Garrido & Yao Xiang & Yunhua Chang-Marchand & Caroline Reisacher & Elisabeth Ageron & Ida Chiara Guerrera & Iñigo Casafont & Aurelia Bruneau & Claire Cherbuy & Xavier Treton & Anne Dumay & , 2022. "The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Kazuhiro Yamaguchi, 2023. "Bayesian Analysis Methods for Two-Level Diagnosis Classification Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 773-809, December.
    16. Matteo Maria Naldini & Gabriele Casirati & Matteo Barcella & Paola Maria Vittoria Rancoita & Andrea Cosentino & Carolina Caserta & Francesca Pavesi & Erika Zonari & Giacomo Desantis & Diego Gilioli & , 2023. "Longitudinal single-cell profiling of chemotherapy response in acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Mahmoud A. Bassal & Saumya E. Samaraweera & Kelly Lim & Brooks A. Benard & Sheree Bailey & Satinder Kaur & Paul Leo & John Toubia & Chloe Thompson-Peach & Tran Nguyen & Kyaw Ze Ya Maung & Debora A. Ca, 2022. "Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Ye, Mao & Zhang, Peng & Nie, Lizhen, 2018. "Clustering sparse binary data with hierarchical Bayesian Bernoulli mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 32-49.
    19. Rebekka Wegmann & Lorenz Bankel & Yasmin Festl & Kate Lau & Sohyon Lee & Fabian Arnold & Valentina Cappelletti & Aaron Fehr & Paola Picotti & Konstantin J. Dedes & Daniel Franzen & Daniela Lenggenhage, 2024. "Molecular and functional landscape of malignant serous effusions for precision oncology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    20. Tea Pemovska & Johannes W. Bigenzahn & Ismet Srndic & Alexander Lercher & Andreas Bergthaler & Adrián César-Razquin & Felix Kartnig & Christoph Kornauth & Peter Valent & Philipp B. Staber & Giulio Sup, 2021. "Metabolic drug survey highlights cancer cell dependencies and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38515-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.