IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51085-3.html
   My bibliography  Save this article

Structural basis of TRPV1 inhibition by SAF312 and cholesterol

Author

Listed:
  • Junping Fan

    (Peking University)

  • Han Ke

    (Peking University)

  • Jing Lei

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences)

  • Jin Wang

    (Peking University)

  • Makoto Tominaga

    (National Institutes of Natural Sciences
    National Institutes of Natural Sciences
    Nagoya City University)

  • Xiaoguang Lei

    (Peking University
    Peking University
    Shenzhen Bay Laboratory)

Abstract

Transient Receptor Potential Vanilloid 1 (TRPV1) plays a central role in pain sensation and is thus an attractive pharmacological drug target. SAF312 is a potent, selective, and non-competitive antagonist of TRPV1 and shows promising potential in treating ocular surface pain. However, the precise mechanism by which SAF312 inhibits TRPV1 remains poorly understood. Here, we present the cryo-EM structure of human TRPV1 in complex with SAF312, elucidating the structural foundation of its antagonistic effects on TRPV1. SAF312 binds to the vanilloid binding pocket, preventing conformational changes in S4 and S5 helices, which are essential for channel gating. Unexpectedly, a putative cholesterol was found to contribute to SAF312’s inhibition. Complemented by mutagenesis experiments and molecular dynamics simulations, our research offers substantial mechanistic insights into the regulation of TRPV1 by SAF312, highlighting the interplay between the antagonist and cholesterol in modulating TRPV1 function. This work not only expands our understanding of TRPV1 inhibition by SAF312 but also lays the groundwork for further developments in the design and optimization of TRPV1-related therapies.

Suggested Citation

  • Junping Fan & Han Ke & Jing Lei & Jin Wang & Makoto Tominaga & Xiaoguang Lei, 2024. "Structural basis of TRPV1 inhibition by SAF312 and cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51085-3
    DOI: 10.1038/s41467-024-51085-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51085-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51085-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Gao & Erhu Cao & David Julius & Yifan Cheng, 2016. "TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action," Nature, Nature, vol. 534(7607), pages 347-351, June.
    2. Michael J. Caterina & Mark A. Schumacher & Makoto Tominaga & Tobias A. Rosen & Jon D. Levine & David Julius, 1997. "The capsaicin receptor: a heat-activated ion channel in the pain pathway," Nature, Nature, vol. 389(6653), pages 816-824, October.
    3. Erhu Cao & Maofu Liao & Yifan Cheng & David Julius, 2013. "TRPV1 structures in distinct conformations reveal activation mechanisms," Nature, Nature, vol. 504(7478), pages 113-118, December.
    4. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Maofu Liao & Erhu Cao & David Julius & Yifan Cheng, 2013. "Structure of the TRPV1 ion channel determined by electron cryo-microscopy," Nature, Nature, vol. 504(7478), pages 107-112, December.
    7. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Do Hoon Kwon & Feng Zhang & Justin G. Fedor & Yang Suo & Seok-Yong Lee, 2022. "Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Barbara Storti & Carmine Di Rienzo & Francesco Cardarelli & Ranieri Bizzarri & Fabio Beltram, 2015. "Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    4. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Maxim V Nikolaev & Natalia A Dorofeeva & Margarita S Komarova & Yuliya V Korolkova & Yaroslav A Andreev & Irina V Mosharova & Eugene V Grishin & Denis B Tikhonov & Sergey A Kozlov, 2017. "TRPV1 activation power can switch an action mode for its polypeptide ligands," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    6. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Heng Zhang & Jia-Jia Lin & Ya-Kai Xie & Xiu-Zu Song & Jia-Yi Sun & Bei-Lei Zhang & Yun-Kun Qi & Zhen-Zhong Xu & Fan Yang, 2023. "Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Ruth A. Pumroy & Anna D. Protopopova & Tabea C. Fricke & Iris U. Lange & Ferdinand M. Haug & Phuong T. Nguyen & Pamela N. Gallo & Bárbara B. Sousa & Gonçalo J. L. Bernardes & Vladimir Yarov-Yarovoy & , 2022. "Structural insights into TRPV2 activation by small molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xiaolong Gao & Philipp A. M. Schmidpeter & Vladimir Berka & Ryan J. Durham & Chen Fan & Vasanthi Jayaraman & Crina M. Nimigean, 2022. "Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Zakir, HM & Mostafeezur, RM & Suzuki, A & Hitomi, S & Maeda, T & Seo, K & Yamada, Y & Yamamura, K & Lev, S & Binshtok, AM & Iwata, K & Kitagawa, J, 2012. "Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation," MPRA Paper 50539, University Library of Munich, Germany.
    12. Hiroki Ota & Kimiaki Katanosaka & Shiori Murase & Makiko Kashio & Makoto Tominaga & Kazue Mizumura, 2013. "TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    13. Hossain Md Zakir & Rahman Md Mostafeezur & Akiko Suzuki & Suzuro Hitomi & Ikuko Suzuki & Takeyasu Maeda & Kenji Seo & Yoshiaki Yamada & Kensuke Yamamura & Shaya Lev & Alexander M Binshtok & Koichi Iwa, 2012. "Expression of TRPV1 Channels after Nerve Injury Provides an Essential Delivery Tool for Neuropathic Pain Attenuation," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-12, September.
    14. Petra I Baeumler & Johannes Fleckenstein & Shin Takayama & Michael Simang & Takashi Seki & Dominik Irnich, 2014. "Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-40, December.
    15. Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Filomena Perri & Adriana Coricello & James D. Adams, 2020. "Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain?," J, MDPI, vol. 3(2), pages 1-20, May.
    19. Luciano Maria Catalfamo & Giulia Marrone & Michele Basilicata & Ilaria Vivarini & Vincenza Paolino & David Della-Morte & Francesco Saverio De Ponte & Francesca Di Daniele & Domenico Quattrone & Danilo, 2022. "The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    20. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51085-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.