IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37993-w.html
   My bibliography  Save this article

Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche

Author

Listed:
  • Daniel Haensel

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Bence Daniel

    (Stanford University School of Medicine
    Gladstone-UCSF Institute of Genomic Immunology)

  • Sadhana Gaddam

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Cory Pan

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Tania Fabo

    (Stanford University School of Medicine)

  • Jeremy Bjelajac

    (Stanford University School of Medicine)

  • Anna R. Jussila

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Fernanda Gonzalez

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Nancy Yanzhe Li

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Yun Chen

    (Washington University School of Medicine
    Washington University School of Medicine)

  • JinChao Hou

    (Washington University School of Medicine)

  • Tiffany Patel

    (Stanford University School of Medicine
    Stanford University School of Medicine)

  • Sumaira Aasi

    (Stanford University School of Medicine)

  • Ansuman T. Satpathy

    (Stanford University School of Medicine
    Gladstone-UCSF Institute of Genomic Immunology
    Parker Institute of Cancer Immunotherapy)

  • Anthony E. Oro

    (Stanford University School of Medicine
    Stanford University School of Medicine)

Abstract

Cancer immunotherapies have revolutionized treatment but have shown limited success as single-agent therapies highlighting the need to understand the origin, assembly, and dynamics of heterogeneous tumor immune niches. Here, we use single-cell and imaging-based spatial analysis to elucidate three microenvironmental neighborhoods surrounding the heterogeneous basal cell carcinoma tumor epithelia. Within the highly proliferative neighborhood, we find that TREM2+ skin cancer-associated macrophages (SCAMs) support the proliferation of a distinct tumor epithelial population through an immunosuppression-independent manner via oncostatin-M/JAK-STAT3 signaling. SCAMs represent a unique tumor-specific TREM2+ population defined by VCAM1 surface expression that is not found in normal homeostatic skin or during wound healing. Furthermore, SCAMs actively proliferate and self-propagate through multiple serial tumor passages, indicating long-term potential. The tumor rapidly drives SCAM differentiation, with intratumoral injections sufficient to instruct naive bone marrow-derived monocytes to polarize within days. This work provides mechanistic insights into direct tumor-immune niche dynamics independent of immunosuppression, providing the basis for potential combination tumor therapies.

Suggested Citation

  • Daniel Haensel & Bence Daniel & Sadhana Gaddam & Cory Pan & Tania Fabo & Jeremy Bjelajac & Anna R. Jussila & Fernanda Gonzalez & Nancy Yanzhe Li & Yun Chen & JinChao Hou & Tiffany Patel & Sumaira Aasi, 2023. "Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37993-w
    DOI: 10.1038/s41467-023-37993-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37993-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37993-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine D. Yao & Daniel Haensel & Sadhana Gaddam & Tiffany Patel & Scott X. Atwood & Kavita Y. Sarin & Ramon J. Whitson & Siegen McKellar & Gautam Shankar & Sumaira Aasi & Kerri Rieger & Anthony E. , 2020. "AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    2. Ann Collier & Angela Liu & Jessica Torkelson & Jillian Pattison & Sadhana Gaddam & Hanson Zhen & Tiffany Patel & Kelly McCarthy & Hana Ghanim & Anthony E. Oro, 2022. "Gibbin mesodermal regulation patterns epithelial development," Nature, Nature, vol. 606(7912), pages 188-196, June.
    3. María Casanova-Acebes & Erica Dalla & Andrew M. Leader & Jessica LeBerichel & Jovan Nikolic & Blanca M. Morales & Markus Brown & Christie Chang & Leanna Troncoso & Steven T. Chen & Ana Sastre-Perona &, 2021. "Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells," Nature, Nature, vol. 595(7868), pages 578-584, July.
    4. Hao Chen & Mai Chan Lau & Michael Thomas Wong & Evan W Newell & Michael Poidinger & Jinmiao Chen, 2016. "Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    5. Daniel Haensel & Sadhana Gaddam & Nancy Y. Li & Fernanda Gonzalez & Tiffany Patel & Jeffrey M. Cloutier & Kavita Y. Sarin & Jean Y. Tang & Kerri E. Rieger & Sumaira Z. Aasi & Anthony E. Oro, 2022. "LY6D marks pre-existing resistant basosquamous tumor subpopulations," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Adriana Sánchez-Danés & Jean-Christophe Larsimont & Mélanie Liagre & Eva Muñoz-Couselo & Gaëlle Lapouge & Audrey Brisebarre & Christine Dubois & Mariano Suppa & Vijayakumar Sukumaran & Véronique del M, 2018. "A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy," Nature, Nature, vol. 562(7727), pages 434-438, October.
    7. Brian Biehs & Gerrit J. P. Dijkgraaf & Robert Piskol & Bruno Alicke & Soufiane Boumahdi & Franklin Peale & Stephen E. Gould & Frederic J. Sauvage, 2018. "A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition," Nature, Nature, vol. 562(7727), pages 429-433, October.
    8. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nancy Yanzhe Li & Weiruo Zhang & Daniel Haensel & Anna R. Jussila & Cory Pan & Sadhana Gaddam & Sylvia K. Plevritis & Anthony E. Oro, 2024. "Basal-to-inflammatory transition and tumor resistance via crosstalk with a pro-inflammatory stromal niche," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancy Yanzhe Li & Weiruo Zhang & Daniel Haensel & Anna R. Jussila & Cory Pan & Sadhana Gaddam & Sylvia K. Plevritis & Anthony E. Oro, 2024. "Basal-to-inflammatory transition and tumor resistance via crosstalk with a pro-inflammatory stromal niche," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Daniel Haensel & Sadhana Gaddam & Nancy Y. Li & Fernanda Gonzalez & Tiffany Patel & Jeffrey M. Cloutier & Kavita Y. Sarin & Jean Y. Tang & Kerri E. Rieger & Sumaira Z. Aasi & Anthony E. Oro, 2022. "LY6D marks pre-existing resistant basosquamous tumor subpopulations," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Alexander H. Lee & Lu Sun & Aaron Y. Mochizuki & Jeremy G. Reynoso & Joey Orpilla & Frances Chow & Jenny C. Kienzler & Richard G. Everson & David A. Nathanson & Steven J. Bensinger & Linda M. Liau & T, 2021. "Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Swetha Anandhan & Shelley Herbrich & Sangeeta Goswami & Baoxiang Guan & Yulong Chen & Marc Daniel Macaluso & Sonali Jindal & Seanu Meena Natarajan & Samuel W. Andrewes & Liangwen Xiong & Ashwat Nagara, 2024. "TSG-6+ cancer-associated fibroblasts modulate myeloid cell responses and impair anti-tumor response to immune checkpoint therapy in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    8. Tim Flerlage & Jeremy Chase Crawford & E. Kaitlynn Allen & Danielle Severns & Shaoyuan Tan & Sherri Surman & Granger Ridout & Tanya Novak & Adrienne Randolph & Alina N. West & Paul G. Thomas, 2023. "Single cell transcriptomics identifies distinct profiles in pediatric acute respiratory distress syndrome," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Shirong Cao & Yu Pan & Andrew S. Terker & Juan Pablo Arroyo Ornelas & Yinqiu Wang & Jiaqi Tang & Aolei Niu & Sarah Abu Kar & Mengdi Jiang & Wentian Luo & Xinyu Dong & Xiaofeng Fan & Suwan Wang & Matth, 2023. "Epidermal growth factor receptor activation is essential for kidney fibrosis development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Christopher Bono & Yang Liu & Alexander Ferrena & Aneesa Valentine & Deyou Zheng & Bernice E. Morrow, 2023. "Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Víctor A. Arrieta & Andrew Gould & Kwang-Soo Kim & Karl J. Habashy & Crismita Dmello & Gustavo I. Vázquez-Cervantes & Irina Palacín-Aliana & Graysen McManus & Christina Amidei & Cristal Gomez & Silpol, 2024. "Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Faith H. Brennan & Yang Li & Cankun Wang & Anjun Ma & Qi Guo & Yi Li & Nicole Pukos & Warren A. Campbell & Kristina G. Witcher & Zhen Guan & Kristina A. Kigerl & Jodie C. E. Hall & Jonathan P. Godbout, 2022. "Microglia coordinate cellular interactions during spinal cord repair in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Ilmatar Rooda & Jasmin Hassan & Jie Hao & Magdalena Wagner & Elisabeth Moussaud-Lamodière & Kersti Jääger & Marjut Otala & Katri Knuus & Cecilia Lindskog & Kiriaki Papaikonomou & Sebastian Gidlöf & Ce, 2024. "In-depth analysis of transcriptomes in ovarian cortical follicles from children and adults reveals interfollicular heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Wei Yang & Li-Bo Liu & Feng-Liang Liu & Yan-Hua Wu & Zi-Da Zhen & Dong-Ying Fan & Zi-Yang Sheng & Zheng-Ran Song & Jia-Tong Chang & Yong-Tang Zheng & Jing An & Pei-Gang Wang, 2023. "Single-cell RNA sequencing reveals the fragility of male spermatogenic cells to Zika virus-induced complement activation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Luke Simpson & Andrew Strange & Doris Klisch & Sophie Kraunsoe & Takuya Azami & Daniel Goszczynski & Triet Minh & Benjamin Planells & Nadine Holmes & Fei Sang & Sonal Henson & Matthew Loose & Jennifer, 2024. "A single-cell atlas of pig gastrulation as a resource for comparative embryology," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37993-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.