Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37745-w
Download full text from publisher
References listed on IDEAS
- Margarete Diaz-Cuadros & Daniel E. Wagner & Christoph Budjan & Alexis Hubaud & Oscar A. Tarazona & Sophia Donelly & Arthur Michaut & Ziad Al Tanoury & Kumiko Yoshioka-Kobayashi & Yusuke Niino & Ryoich, 2020. "In vitro characterization of the human segmentation clock," Nature, Nature, vol. 580(7801), pages 113-118, April.
- François Giudicelli & Ertuğrul M Özbudak & Gavin J Wright & Julian Lewis, 2007. "Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism," PLOS Biology, Public Library of Science, vol. 5(6), pages 1-15, May.
- Kumiko Yoshioka-Kobayashi & Marina Matsumiya & Yusuke Niino & Akihiro Isomura & Hiroshi Kori & Atsushi Miyawaki & Ryoichiro Kageyama, 2020. "Coupling delay controls synchronized oscillation in the segmentation clock," Nature, Nature, vol. 580(7801), pages 119-123, April.
- Julien Dubrulle & Olivier Pourquié, 2004. "fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo," Nature, Nature, vol. 427(6973), pages 419-422, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kishore R Mosaliganti & Ramil R Noche & Fengzhu Xiong & Ian A Swinburne & Sean G Megason, 2012. "ACME: Automated Cell Morphology Extractor for Comprehensive Reconstruction of Cell Membranes," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-14, December.
- Yukinari Haraoka & Yuki Akieda & Yuri Nagai & Chihiro Mogi & Tohru Ishitani, 2022. "Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Rebecca H Chisholm & Barry D Hughes & Kerry A Landman, 2010. "Building a Morphogen Gradient without Diffusion in a Growing Tissue," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
- Ece Özelçi & Erik Mailand & Matthias Rüegg & Andrew C. Oates & Mahmut Selman Sakar, 2022. "Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Marina Sanaki-Matsumiya & Mitsuhiro Matsuda & Nicola Gritti & Fumio Nakaki & James Sharpe & Vikas Trivedi & Miki Ebisuya, 2022. "Periodic formation of epithelial somites from human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37745-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.