Meta-learning biologically plausible plasticity rules with random feedback pathways
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37562-1
Download full text from publisher
References listed on IDEAS
- Timothy P. Lillicrap & Daniel Cownden & Douglas B. Tweed & Colin J. Akerman, 2016. "Random synaptic feedback weights support error backpropagation for deep learning," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robert Rosenbaum, 2022. "On the relationship between predictive coding and backpropagation," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-27, March.
- Michele N. Insanally & Badr F. Albanna & Jade Toth & Brian DePasquale & Saba Shokat Fadaei & Trisha Gupta & Olivia Lombardi & Kishore Kuchibhotla & Kanaka Rajan & Robert C. Froemke, 2024. "Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
- Keitaro Obara & Teppei Ebina & Shin-Ichiro Terada & Takanori Uka & Misako Komatsu & Masafumi Takaji & Akiya Watakabe & Kenta Kobayashi & Yoshito Masamizu & Hiroaki Mizukami & Tetsuo Yamamori & Kiyoto , 2023. "Change detection in the primate auditory cortex through feedback of prediction error signals," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Giorgia Dellaferrera & Stanisław Woźniak & Giacomo Indiveri & Angeliki Pantazi & Evangelos Eleftheriou, 2022. "Introducing principles of synaptic integration in the optimization of deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Ertam, Fatih, 2019. "An efficient hybrid deep learning approach for internet security," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Alexander Ororbia & Daniel Kifer, 2022. "The neural coding framework for learning generative models," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37562-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.