IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37514-9.html
   My bibliography  Save this article

Widespread natural methane and oil leakage from sub-marine Arctic reservoirs

Author

Listed:
  • Pavel Serov

    (UiT–The Arctic University of Norway)

  • Rune Mattingsdal

    (NPD—Norwegian Petroleum Directorate, Harstad Office)

  • Monica Winsborrow

    (UiT–The Arctic University of Norway)

  • Henry Patton

    (UiT–The Arctic University of Norway)

  • Karin Andreassen

    (UiT–The Arctic University of Norway)

Abstract

Parceling the anthropogenic and natural (geological) sources of fossil methane in the atmosphere remains problematic due to a lack of distinctive chemical markers for their discrimination. In this light, understanding the distribution and contribution of potential geological methane sources is important. Here we present empirical observations of hitherto undocumented, widespread and extensive methane and oil release from geological reservoirs to the Arctic Ocean. Methane fluxes from >7000 seeps significantly deplete in seawater, but nevertheless reach the sea surface and may transfer to the air. Oil slick emission spots and gas ebullition are persistent across multi-year observations and correlate to formerly glaciated geological structures, which have experienced km-scale glacial erosion that has left hydrocarbon reservoirs partially uncapped since the last deglaciation ~15,000 years ago. Such persistent, geologically controlled, natural hydrocarbon release may be characteristic of formerly glaciated hydrocarbon-bearing basins which are common across polar continental shelves, and could represent an underestimated source of natural fossil methane within the global carbon cycle.

Suggested Citation

  • Pavel Serov & Rune Mattingsdal & Monica Winsborrow & Henry Patton & Karin Andreassen, 2023. "Widespread natural methane and oil leakage from sub-marine Arctic reservoirs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37514-9
    DOI: 10.1038/s41467-023-37514-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37514-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37514-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Hmiel & V. V. Petrenko & M. N. Dyonisius & C. Buizert & A. M. Smith & P. F. Place & C. Harth & R. Beaudette & Q. Hua & B. Yang & I. Vimont & S. E. Michel & J. P. Severinghaus & D. Etheridge &, 2020. "Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions," Nature, Nature, vol. 578(7795), pages 409-412, February.
    2. Matthew J Bogard & Paul A del Giorgio & Lennie Boutet & Maria Carolina Garcia Chaves & Yves T Prairie & Anthony Merante & Alison M Derry, 2014. "Oxic water column methanogenesis as a major component of aquatic CH4 fluxes," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Stefan Schwietzke & Owen A. Sherwood & Lori M. P. Bruhwiler & John B. Miller & Giuseppe Etiope & Edward J. Dlugokencky & Sylvia Englund Michel & Victoria A. Arling & Bruce H. Vaughn & James W. C. Whit, 2016. "Upward revision of global fossil fuel methane emissions based on isotope database," Nature, Nature, vol. 538(7623), pages 88-91, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    2. Lu Shen & Daniel J. Jacob & Ritesh Gautam & Mark Omara & Tia R. Scarpelli & Alba Lorente & Daniel Zavala-Araiza & Xiao Lu & Zichong Chen & Jintai Lin, 2023. "National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Marek Borowski & Piotr Życzkowski & Jianwei Cheng & Rafał Łuczak & Klaudia Zwolińska, 2020. "The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN," Energies, MDPI, vol. 13(17), pages 1-18, August.
    4. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Min Zhang & Yan Qiu & Chunling Li & Tao Cui & Mingxing Yang & Jun Yan & Wu Yang, 2023. "A Habitable Earth and Carbon Neutrality: Mission and Challenges Facing Resources and the Environment in China—An Overview," IJERPH, MDPI, vol. 20(2), pages 1-35, January.
    6. Matteo B. Bertagni & Stephen W. Pacala & Fabien Paulot & Amilcare Porporato, 2022. "Risk of the hydrogen economy for atmospheric methane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Diosey Ramon Lugo-Morin, 2021. "Global Future: Low-Carbon Economy or High-Carbon Economy?," World, MDPI, vol. 2(2), pages 1-19, April.
    8. César Ordóñez & Tonya DelSontro & Timon Langenegger & Daphne Donis & Ena L. Suarez & Daniel F. McGinnis, 2023. "Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    10. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Mark Agerton & Ben Gilbert & Gregory B. Upton Jr., 2021. "The Economics of Natural Gas Venting, Flaring and Leaking in U.S. Shale: An Agenda for Research and Policy," Working Papers 2021-02, Colorado School of Mines, Division of Economics and Business.
    12. Jager, Henriette I. & Griffiths, Natalie A. & Hansen, Carly H. & King, Anthony W. & Matson, Paul G. & Singh, Debjani & Pilla, Rachel M., 2022. "Getting lost tracking the carbon footprint of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Titchener, James & Millington-Smith, Doug & Goldsack, Chris & Harrison, George & Dunning, Alexander & Ai, Xiao & Reed, Murray, 2022. "Single photon Lidar gas imagers for practical and widespread continuous methane monitoring," Applied Energy, Elsevier, vol. 306(PB).
    14. Robert V. Parsons, 2021. "Canada as a Case Study for Balanced Presentation to Address Controversy on Emission Reduction Policies," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    15. Xiaoqian Li & Jianwei Xing & Shouji Pang & Youhai Zhu & Shuai Zhang & Rui Xiao & Cheng Lu, 2022. "Carbon Isotopic Evidence for Gas Hydrate Release and Its Significance on Seasonal Wetland Methane Emission in the Muli Permafrost of the Qinghai-Tibet Plateau," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    16. Elisabet Perez-Coronel & J. Michael Beman, 2022. "Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Webb, Jeremy & Longden, Thomas & Boulaire, Fanny & Gono, Marcel & Wilson, Clevo, 2023. "The application of green finance to the production of blue and green hydrogen: A comparative study," Renewable Energy, Elsevier, vol. 219(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37514-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.