IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37503-y.html
   My bibliography  Save this article

Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6

Author

Listed:
  • Emanuela Colucci

    (University of Groningen)

  • Zaid R. Anshari

    (University of Groningen)

  • Miyer F. Patiño-Ruiz

    (University of Groningen)

  • Mariia Nemchinova

    (University of Groningen)

  • Jacob Whittaker

    (University of Groningen)

  • Dirk J. Slotboom

    (University of Groningen)

  • Albert Guskov

    (University of Groningen)

Abstract

Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.

Suggested Citation

  • Emanuela Colucci & Zaid R. Anshari & Miyer F. Patiño-Ruiz & Mariia Nemchinova & Jacob Whittaker & Dirk J. Slotboom & Albert Guskov, 2023. "Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37503-y
    DOI: 10.1038/s41467-023-37503-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37503-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37503-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olga Boudker & Renae M. Ryan & Dinesh Yernool & Keiko Shimamoto & Eric Gouaux, 2007. "Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter," Nature, Nature, vol. 445(7126), pages 387-393, January.
    2. Albert Guskov & Sonja Jensen & Ignacio Faustino & Siewert J. Marrink & Dirk Jan Slotboom, 2016. "Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    3. Dinesh Yernool & Olga Boudker & Yan Jin & Eric Gouaux, 2004. "Structure of a glutamate transporter homologue from Pyrococcus horikoshii," Nature, Nature, vol. 431(7010), pages 811-818, October.
    4. Ichia Chen & Shashank Pant & Qianyi Wu & Rosemary J. Cater & Meghna Sobti & Robert J. Vandenberg & Alastair G. Stewart & Emad Tajkhorshid & Josep Font & Renae M. Ryan, 2021. "Glutamate transporters have a chloride channel with two hydrophobic gates," Nature, Nature, vol. 591(7849), pages 327-331, March.
    5. Valentina Arkhipova & Albert Guskov & Dirk J. Slotboom, 2020. "Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Wang & Fengying Fan & Zhihai Li & Fei Ye & Qingxia Wang & Rongchao Gao & Jiaxuan Qiu & Yixin Lv & Min Lin & Wenwen Xu & Cheng Luo & Xuekui Yu, 2024. "Structural insights into the functional mechanism of the ubiquitin ligase E6AP," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takafumi Kato & Tsukasa Kusakizako & Chunhuan Jin & Xinyu Zhou & Ryuichi Ohgaki & LiLi Quan & Minhui Xu & Suguru Okuda & Kan Kobayashi & Keitaro Yamashita & Tomohiro Nishizawa & Yoshikatsu Kanai & Osa, 2022. "Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Zhenglai Zhang & Huiwen Chen & Ze Geng & Zhuoya Yu & Hang Li & Yanli Dong & Hongwei Zhang & Zhuo Huang & Juquan Jiang & Yan Zhao, 2022. "Structural basis of ligand binding modes of human EAAT2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Anna M. Borowska & Maria Gabriella Chiariello & Alisa A. Garaeva & Jan Rheinberger & Siewert J. Marrink & Cristina Paulino & Dirk J. Slotboom, 2024. "Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Biao Qiu & Olga Boudker, 2023. "Symport and antiport mechanisms of human glutamate transporters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. David B. Sauer & Jennifer J. Marden & Joseph C. Sudar & Jinmei Song & Christopher Mulligan & Da-Neng Wang, 2022. "Structural basis of ion – substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Mingxing Wang & Jin He & Shanshan Li & Qianwen Cai & Kaiming Zhang & Ji She, 2023. "Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Reza Dastvan & Ali Rasouli & Sepehr Dehghani-Ghahnaviyeh & Samantha Gies & Emad Tajkhorshid, 2022. "Proton-driven alternating access in a spinster lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Chancievan Thangaratnarajah & Mark Nijland & Luís Borges-Araújo & Aike Jeucken & Jan Rheinberger & Siewert J. Marrink & Paulo C. T. Souza & Cristina Paulino & Dirk J. Slotboom, 2023. "Expulsion mechanism of the substrate-translocating subunit in ECF transporters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Wesley Tien Chiang & Yao-Kai Chang & Wei-Han Hui & Shu-Wei Chang & Chen-Yi Liao & Yi-Chuan Chang & Chun-Jung Chen & Wei-Chen Wang & Chien-Chen Lai & Chun-Hsiung Wang & Siou-Ying Luo & Ya-Ping Huang & , 2024. "Structural basis and synergism of ATP and Na+ activation in bacterial K+ uptake system KtrAB," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37503-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.